1
0998 J. Phys. Chem., Vol. 100, No. 26, 1996
Sehested et al.
formation of F adducts with the parent species. The question
is: What is the nature of these species? Since F atoms form
adducts with CH3Br and CF2BrH, it seems reasonable to suggest
that in the adduct the F atom is bound to the bromine atom in
the parent compound. One experimental observation appears
to be in conflict with this conclusion; radiolysis of SF6 in the
presence of CF3Br or CCl3Br does not give significant absorp-
tion at 280 nm. Two potential explanations can be given for
this. First, perhaps the formation of the adduct requires the
presence of a Br atom and a H atom in the molecule. Therefore
no adduct is formed from the reaction of F atoms with CF3Br
or CCl3Br. Second, perhaps the equilibrium constant for the
equilibrium between F atoms and R-Br is shifted so much
toward the left in the case of CF3Br and CCl3Br that we cannot
observe the adduct formation in these cases. From the stability
of the CH3Br--F and CF2BrH--F adducts, the stability of the
complex seems to decrease when fluorine is present in the
molecule. This trend is consistent with the inductive effect of
the F atoms, reducing the electron density associated with the
Br atom and hence reducing the adduct stability. This observa-
tion supports the suggestion made above that it is a lower
equilibrium constant in the case of CF3Br and CCl3Br that leads
to the failure in observing an adduct. From the absence of any
detectable absorption and assuming that the CF3Br--F and CCl3-
Br--F adducts have absorption cross sections at 280 nm which
are comparable to those of CH2Br--F and CF2BrH--F, i.e., 1 ×
References and Notes
(1) Scientific Assessment of Ozone Depletion; Global Ozone Research
and Monitoring Project, Report No. 25; World Meteorological Organiza-
tion: 1991.
(2) Report on Concentrations, Lifetimes, and Trends of CFCs, Halons,
and Related Species; NASA Reference Publication 1339; National Aero-
nautics and Space Administration: Washington, DC, 1994.
(3) Mellouki, A.; Talukdar, R. K.; Schmoltner, A. M.; Gierczak, T.;
Mills, M. J.; Solomon, S.; Ravishankara, A. R. J. Geophys. Res. 1992, 19,
2059.
(
4) Chichinin, A.; Teton, S.; Le Bras, G.; Poulet, G. J. Atmos. Chem.
992, 24, 2413.
5) Zhang, Z.; Saini, R. D.; Kurylo, M. J.; Huie, R. E. J. Geophys.
Res. 1992, 24, 2413.
6) Nielsen, O. J.; Munk, J.; Locke, G.; Wallington, T. J. J. Phys. Chem.
1991, 95, 8714.
(7) Villenave, E.; Lesclaux, P. Chem. Phys. Lett. 1995, 236, 376.
8) Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman,
G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. Atmos. EnViron. 1992,
6A, 1805.
9) Wallington, T. J.; Dagaut, P.; Kurylo, M. J. Chem. ReV. 1992, 92,
1
(
(
(
2
(
667.
(10) Orlando, J. J.; Tyndall, G. S.; Wallington, T. J. J. Phys. Chem.
996, 100, 7026.
11) Bilde, M.; Sehested, J.; Møgelberg, T.; Wallington, T. J.; Nielsen,
O. J. J. Phys. Chem. 1996, 100, 7050.
12) Wine, P. H. Paper presented at the National ACS meeting in
1
(
(
Chicago, August 1995.
(13) Sehested, J. Ph.D. Thesis, Risø-R-804, 1994.
(
14) Hansen, K. B.; Wilbrandt, R.; Pagsberg, P. ReV. Sci. Instrum. 1979,
-17
2
-1
-18
3
50, 1532.
1
0
cm molecule , we provide estimates of 1 × 10
cm
(
(
15) Wallington, T. J.; Japar, S. M. J. Atmos. Chem. 1989, 9, 399.
16) Rasmussen, O. L.; Bjergbakke, E. Risø-R-2430, Risø National
-1
molecule for the upper limits of the equilibrium constants for
the CF3Br--F and CCl3Br--F adducts at 296 K.
Laboratory: Roskilde, Denmark, 1984.
Further experimental studies of the reactions of F atoms with
CF3Br and CCl3Br at low temperatures, the reaction of F atoms
with other brominated compounds and theoretical calculations
of the nature of the complexes are needed to provide more
information on the structure of the adduct formed.
(17) Wallington, T. J.; Hurley, M. D. Chem. Phys. Lett. 1992, 189, 437.
(18) Wallington, T. J.; Hurley, M. D.; Shi, J.; Maricq, M. M.; Sehested,
J.; Ellermann, T.; Nielsen, O. J. Int. J. Chem. Kinet. 1993, 25, 651.
(19) Wallington, T. J.; Hurley, M. D. Chem. Phys. Lett. 1992, 193, 84.
(20) DeMore, W. B.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.;
Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. JPL Publ.
994, 94-26.
During the course of the present experiments Wine and co-
1
workers reported evidence for the formation of adducts in the
(21) Wallington, T. J.; Hurley, M. D.; Shi, J.; Maricq, M.; Sehested, J.;
Nielsen, O. J.; Ellermann, T. Int. J. Chem. Kinet. 1993, 25, 651.
reactions of Cl atoms with CH3Br and CH3I.12 It is possible
(22) Sehested, J. Int. J. Chem. Kinet. 1994, 26, 1023.
that adduct formation is a common mechanism of the reaction
of halogen atoms with haloalkanes. Further experimental and
computational work is needed to explore this possibility.
(23) Wallington, T. J.; Ellermann, T.; Nielsen, O. J.; Sehested, J. J. Phys.
Chem. 1994, 98, 2346.
(24) Burley, J. D.; Miller, C. E.; Johnston, H. S. J. Mol. Spectrosc. 1993,
1
58, 377.
Acknowledgment. We thank Steve Japar (Ford Motor Co.)
for a careful reading of the manuscript, and Paul Wine (Georgia
Institute of Technology) for helpful discussions regarding the
stability of adducts formed from the reaction of halogen atoms
with CH3Br and CH3I.
(25) Ellermann, T.; Sehested, J.; Nielsen, O. J.; Pagsberg, P.; Wallington,
T. J. Chem. Phys. Lett. 1994, 218, 287.
(
(
26) Iyer, R. S.; Rowland, F. S. J. Phys. Chem. 1981, 85, 2488.
27) Iyer, R. S.; Rowland, F. S. J. Phys. Chem. 1981, 85, 2493.
JP953397F