D. de Luna Martins et al. / Tetrahedron Letters 51 (2010) 6814–6817
6817
1
2
9. Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918–920.
Pd(0)-PVP, K CO ,
2
3
0. (a) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320–2322; (b) Beletskaya, I.
P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066; (c) Martins, D. L.;
Alvarez, H. M.; Aguiar, L. C. S.; Antunes, O. A. C. Lett. Org. Chem. 2007, 4, 253–
Ar Br + PhB(OH)2
Ar -Ph
1
1
EtOH, 300W, 120º C
2
55.
1. (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467–
470; (b) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874–922.
2. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
Scheme 4. Pd(0)–PVP-catalyzed Suzuki reactions under MW.
2
4
2
Table 3
Suzuki couplings between aryl bromides and phenylboronic acid
23. (a) Roy, P. S.; Bagchi, J.; Bhattacharya, S. K. Transit. Met. Chem. 2009, 34, 447–
453; (b) Zhang, Y.; Yu, J.; Liu, H. J. Colloid Interface Sci. 2007, 313, 503–510.
24. Teranishi, T.; Miyake, M. Chem. Mater. 1998, 10, 594–600.
Product
Yielda (%)
87
25. Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–6284.
1
Ar Br
26. (a) Nilson, P.; Olofson, K.; Larhed, M. Top. Curr. Chem. 2006, 266, 103–144; (b)
Br
Appukkuttan, P.; Eycken, E. V. Eur. J. Org. Chem. 2008, 1133–1155.
Ph
1
27. Souza, A. L. F.; Silva, L. C.; Oliveira, B. L.; Antunes, O. A. C. Tetrahedron Lett. 2008,
9, 3895–3898.
8. Bradley, J. S.; Millar, J. M.; Hill, E. W. J. Am. Chem. Soc. 1991, 113, 4016–4017.
29. 2.5 g of PVP (40,000 Da) was added to 150 mL of methanol and stirred until the
total solubilization of the polymer. To this solution, Pd(OAc) was added and
4
2
2
3
MeO
O
Br
Br
MeO
O
Ph
Ph
43
79
2
the resulting mixture was immersed in a pre-heated oil bath at 85 °C, under
constant stirring for 3.0 h. Next, methanol was removed in a rotary evaporator
and the Pd(0)–PVP nanoparticles were transferred quantitatively to a 25 mL
volumetric flask.
N
Br
N
Ph
3
0. Martins, D.L; Alvarez, H. M.; Aguiar, L. C. S. Suzuki reactions catalyzed by
Pd(0)–PVP nanoparticles under conventional heating and ultrasound
irradiation—the Letter has been submitted for reviewing.
4
60
3
3
1. Li, Y.; Hong, X. M.; Collard, D. M.; El-Sayed, M. A. Org. Lett. 2000, 2, 2385–2388.
2. In a typical experiment, a pyrex tube equipped with a magnetic stirrer was
Conditions: aryl iodide (1.0 mmol), arylboronic acid (1.1 mmol), K
2 3
CO (2.0 mmol),
ethanol (2 mL), 0.01% Pd with respect to the mass of the aryl bromide.
2 3
charged with 0.276 g of K CO (2.0 mmol), 2.0 mL of ethanol, 0.22 mL of Pd(0)–
a
GC–MS yield with respect to the consumption of the aryl halide by normali-
zation of the areas.
PVP solution (0.1% Pd with respect to the iodobenzene mass), iodobenzene,
(1.0 mmol) and phenylboronic acid (1.1 mmol). This tube was sealed and the
content was subjected to the focused microwave irradiation at 300 W for
12 minutes (2.0 min ramping + 10 min) with 120 °C as the general final
temperature. Then, the reaction mixture was cooled to room temperature
and diluted with 8.0 mL of diethyl ether and stirred until the nanoparticles and
the inorganics precipitation. Organic phase was analyzed by GC–MS (GCMS-
QP2010PluesShimadz). Afterward, the mixture was passed through a Celite
Acknowledgments
The authors acknowledge CAPES, CNPq, FAPERJ and FAPESB,
Brazilian Support Foundations for financial support.
pad, washed with ether, dried over Na
reduced pressure. Products were analyzed by GC–MS and H RMN.
2 4
SO and the solvent evaporated at
1 34
3
3. Smith, G. B.; Dezeny, G. C.; Huges, D. L.; King, A. O.; Verhoeven, T. R. J. Org.
Chem. 1994, 59, 8151–8156.
4. Biphenyl: white solid m/z (EI) 154 (100), 153 (40), 128 (5), 102 (4), 76 (28), 51
References and notes
3
(
7). 2-phenyltoluene m/z (EI) 168 (100), 153 (45), 128 (7), 63 (9), 51 (6). 4-
phenyltoluene: white solid m/z (EI) 168 (100), 162 (60), 152 (20), 91 (19), 63
21), 51 (17); d (50 MHz, CDCl ) 141.26, 138.46, 137.71, 129.56, 128.79,
27.07, 21.77. 4-methoxybiphenyl: white solid—d (200 MHz CDCl ) 7.6–7.22
7H, m), 7.01 (2H, d, J 10 Hz), 3.87 (3H, s); d (50 MHz, CDCl ) 159.2, 140.85,
33.78, 128.73, 128.17, 126.69, 114.25, 55.32; nmax (KBr) 3303, 2908, 2836,
1
2
3
.
.
.
Sergeev, G. B. In Nanochemistry; Elsevier: Amsterdam, 2006; pp 1–6.
El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257–264.
Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Chem. Soc. Rev. 2000,
(
1
(
1
1
1
C
3
H
3
29, 27–35.
C
3
4
.
Astruc, D. In Nanoparticles and Catalysis; Wiley-VCH: Weinheim, 2008; Vol. 1,
pp 1–48.
Aiken, J. D., III; Finke, R. G. J. Mol. Catal. A: Chem. 1999, 145, 1–44.
Grunes, J.; Zhu, J.; Somorjai, G. A. Chem. Commun. 2003, 2257–2260.
Mukjerjee, D. J. Nanopart. Res. 2008, 10, 429–436.
À1
606, 1523, 1488, 1251, 1053, 834, 760, 688 cm ; m/z (EI) 184 (100), 169 (55),
41 (55), 115 (70), 89 (18), 76 (28), 63 (28). 4-nitrobiphenyl: yellow solid—d
) 8.25 (2H, d, J 8 Hz), 8.15 (2H, d, J 8 Hz), 7.65 (2H, d, J 6 Hz),
5
6
7
8
9
.
.
.
.
.
H
(
200 MHz CDCl
3
7
1
1
.56–7.28 (3H, m); d
27.5, 124.2; nmax (KBr) 3036, 3038, 1597, 1514, 1345, 853, 740 cm ; m/z (EI)
99 (72), 169 (41), 152 (100), 127 (12), 115 (19), 76 (22), 46 (<2). 2-phenyl-
C
(50 MHz, CDCl
3
) 147.7, 147.1, 138.9, 129.2, 129.0, 127.9,
Alonso, F.; Riente, P.; Sirvent, J. A.; Yus, M. Appl. Catal. A: Gen. 2010, 378, 42–51.
Calò, V.; Nacci, A.; Monopoli, A.; Montigelli, F. J. Org. Chem. 2005, 70, 6040–
À1
6
044.
furan m/z (EI) 144 (99), 115 (98), 89 (16), 63 (11), 51 (8). 4-fluorobiphenyl:
white solid—d (200 MHz CDCl ) 7.6–710 (9H, m); d (50 MHz, CDCl ) 163.75
and 161.30, 140.32, 137.44 and 137.38, 128.87 and 128.66, 128.82, 127.07,
1
1
phenylacetophenone: yellow oil—d
d, J 8 Hz), 7.82 (1H, d, J 8 Hz), 7.67–7.30 (6H, m), 2.68 (3H, s); d
CDCl ) 198.26, 141.84, 140.29, 137.75, 131.85, 129.26, 129.14, 129.02, 127.91,
1
1
1
1
0. Trzeciak, A. M.; Ziólowski, J. J. Coord. Chem. Rev. 2007, 251, 1281–1293.
1. Gniewek, A.; Trzeciak, A. M.; Ziólowski, J. J.; Kepi n´ ski, L.; Wrzyszcz, J.; Tylus, W.
J. Catal. 2005, 229, 332–343.
H
3
C
3
15.15 and 114.77; nmax (KBr) 3080, 3062, 3040, 1592, 1520, 1487, 1239, 1196,
164, 837, 759, 687, 558, 486; m/z (EI) 172 (100), 146 (5), 133 (5), 85 (14). 3-
1
2. Silva, D. O.; Scholten, J. D.; Gelesky, M. A.; Teixeira, S. R.; Santos, A. C. B.; Souza-
Aguiar, E. F.; Dupont, J. ChemSusChem 2008, 1, 291–294.
H
(200 MHz CDCl
3
) 8.21 (1H, s), 7.96 (1H,
1
3. Ishida, T.; Watanabe, H.; Bebeko, T.; Akita, T.; Haruta, M. Appl. Catal. A: Gen.
C
(50 MHz,
2
010, 377, 42–46.
3
14. Astruc, D.; Lu, F.; Aranzas, J. R. Angew. Chem., Int. Ed. 2005, 44, 7852–7872.
15. Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374–4376.
16. (a) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513–519; (b)
Suzuki, A. J. Organomet. Chem. 1999, 576, 147–168.
27.29, 127.07, 26.84; nmax (KBr) 3060, 3032, 1684, 1599, 1452, 1419, 1357,
235, 803, 758, 697, 589. 4-phenylacetophenone: white solid m/z (EI) 196
(
(
1
50), 181 (100), 152 (60), 76 (75), 43 (36). 4-hydroxybiphenyl: white solid d
H
3
200 MHz CDCl ) 7.59–7.28 (7H, m), 6.93 (2H, d, J 10 Hz); m/z (EI) 170 (100),
1
1
7. (a) Stile, J. K. J. Am. Chem. Soc. 1979, 101, 4992–4998; (b) Stille, J. K. Angew.
Chem., Int. Ed. Engl. 1986, 98, 508–524.
8. Negishi, E. J. Am. Chem. Soc. 1976, 98, 6729–6731.
41 (35), 115 (35). 2-phenylpyridine: m/z (EI) 155 (100), 127 (19), 77 (21), 63
(
5), 51 (15).