10.1002/anie.202105179
Angewandte Chemie International Edition
RESEARCH ARTICLE
Federation using the equipment of the Center for molecular
composition studies of INEOS RAS.
Keywords: rhodium • asymmetric catalysis • diene ligands •
DFT calculations • carbene insertion
References
[1]
[2]
C. Defieber, H. Grutzmacher, E. M. Carreira, Angew. Chem. Int. Ed. 2008,
47, 4482–4502; Angew. Chem. 2008, 120, 4558–4579.
M. Hirano, N. Komine, E. Arata, T. Gridneva, A. Hatori, N. Kaizawa, K.
Kamakura, A. Kuramochi, S. Kurita, S. Machida, H. Okada, A. Sawasaki,
T. Uchino, Tetrahedron Lett. 2019, 60, 150924.
[3]
M. M. Heravi, M. Dehghani, V. Zadsirjan, Tetrahedron Asymmetry 2016,
27, 513–588.
[4]
[5]
T. Hayashi, K. Yamasaki, Chem. Rev. 2003, 103, 2829–2844.
T. Yasukawa, H. Miyamura, S. Kobayashi, Acc. Chem. Res. 2020, 53,
2950–2963.
[6]
[7]
K. Okamoto, T. Hayashi, V. H. Rawal, Org. Lett. 2008, 10, 4387–4389.
C. Fischer, C. Defieber, T. Suzuki, E. M. Carreira, J. Am. Chem. Soc.
2004, 126, 1628–1629.
Scheme 9. Free energy diagram of the insertion of the carbene complex R-II
into N−H bond of benzamide (at M06L/TZVP level).
[8]
[9]
T. Hayashi, K. Ueyama, N. Tokunaga, K. Yoshida, J. Am. Chem. Soc.
2003, 125, 11508–11509.
S. Abele, R. Inauen, D. Spielvogel, C. Moessner, J. Org. Chem. 2012,
77, 4765–4773.
Conclusion
[10] T. Nishimura, H. Kumamoto, M. Nagaosa, T. Hayashi, Chem. Commun.
2009, 5713.
In summary, we developed a new approach to the rhodium
complexes with chiral diene ligands. The method is based on the
diastereoselective coordination of one enantiomer from the
racemic mixture of the complexes with a chiral auxiliary ligand,
which allows for their further separation. Although somewhat
similar methods have been employed previously,[35,61–63] the
potential of this approach is clearly undeveloped and it can be
applied to the complexes of metals other than rhodium and
ligands other than dienes. The DFT calculations are especially
helpful for this method because they allow one to screen a variety
of auxiliary ligands and estimate the selectivity of coordination
with sufficient accuracy before the actual synthesis.
[11] Y. Otomaru, N. Tokunaga, R. Shintani, T. Hayashi, Org. Lett. 2005, 7,
307–310.
[12] Y. Otomaru, A. Kina, R. Shintani, T. Hayashi, Tetrahedron: Asymmetry
2005, 16, 1673–1679.
[13] A. Kina, K. Ueyama, T. Hayashi, Org. Lett. 2005, 7, 5889–5892.
[14] F. Läng, F. Breher, D. Stein, H. Grützmacher, Organometallics 2005, 24,
2997–3007.
[15] M.-C. Melcher, T. Ivšić, C. Olagnon, C. Tenten, A. Lützen, D. Strand,
Chem. Eur. J. 2018, 24, 2344–2348.
[16] M.-C. Melcher, B. Rolim Alves da Silva, T. Ivšić, D. Strand, ACS Omega
2018, 3, 3622–3630.
[17] M. A. Esteruelas, L. A. Oro, Coord. Chem. Rev. 1999, 193–195, 557–
618.
New chiral rhodium complexes with exceptionally bulky
tetrafluoro-benzobarrelene ligands were synthesized and used as
catalysts for asymmetric insertion of diazo esters into B−H and
Si−H bonds. A number of boranes and silanes with various
functional groups were produced in high yields (79−97%) and
enantiomeric purity (87−98% ee). Analogous catalytic insertion of
diazo esters into N−H bonds gave the products with opposite
chiral configuration thus providing an experimental evidence for
the unified mechanism of such transformations. The DFT
calculations suggested that enantioselectivity was determined by
the structure of the intermediate carbene complex and more
specifically by the steric interactions between the ester group and
the substituents in the diene ligand. Hopefully, the new rhodium
catalysts will find application in other asymmetric transformations.
[18] T. Nishimura, H. Makino, M. Nagaosa, T. Hayashi, J. Am. Chem. Soc.
2010, 132, 12865–12867.
[19] T. Nishimura, A. Noishiki, T. Hayashi, Chem. Commun. 2012, 48, 973–
975.
[20] R. Takechi, T. Nishimura, Chem. Commun. 2015, 51, 8528–8531.
[21] Y. Pan, X. Lu, H. Qiu, T. Hayashi, Y. Huang, Org. Lett. 2020, 22, 8413–
8418.
[22] Y. Huang, T. Hayashi, J. Am. Chem. Soc. 2016, 138, 12340–12343.
[23] Y. Huang, T. Hayashi, J. Am. Chem. Soc. 2015, 137, 7556–7559.
[24] K. M.-H. Lim, T. Hayashi, J. Am. Chem. Soc. 2015, 137, 3201–3204.
[25] M. Umeda, K. Sakamoto, T. Nagai, M. Nagamoto, Y. Ebe, T. Nishimura,
Chem. Commun. 2019, 55, 11876–11879.
[26] T. Nishimura, Y. Ichikawa, T. Hayashi, N. Onishi, M. Shiotsuki, T.
Masuda, Organometallics 2009, 28, 4890–4893.
[27] Separation by crystallization of menthol ethers was also used, but
apparently has been abandoned: T. Nishimura, M. Nagaosa, T. Hayashi,
Chem. Lett. 2008, 37, 860–861.
[28] S. C. Cohen, M. L. N. Reddy, D. M. Roe, A. J. Tomlinson, A. G. Massey,
J. Organomet. Chem. 1968, 14, 241–251.
[29] D. S. Perekalin, A. V Kolos, Mendeleev Commun. 2021, 31, 1–7.
[30] Similar situation has been observed previously for rhodium complexes
with diferent chiral ligands: M. Mayr, C. J. R. Bataille, S. Gosiewska, J.
A. Raskatov, J. M. Brown, Tetrahedron Asymmetry 2008, 19, 1328–1332.
[31] L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano,
L. Cavallo, Nat. Chem. 2019, 11, 872–879.
Acknowledgements
We thank Alexey A. Tsygankov and Dr. Dmitry V. Muratov for their
help with analytical measurements. This work was supported by
the Russian Science Foundation (grant no. 17-73-20144). X-ray
diffraction data were collected with financial support from the
Ministry of Science and Higher Education of the Russian
[32] D. Franco, M. Gómez, F. Jiménez, G. Muller, M. Rocamora, M. A.
Maestro, J. Mahía, Organometallics 2004, 23, 3197–3209.
8
This article is protected by copyright. All rights reserved.