P.D. Fischer, E. Papadopoulos, J.M. Dempersmier et al.
European Journal of Medicinal Chemistry 219 (2021) 113435
of the proto-oncogene eIF4E in surgical margins may predict recurrence in
[34] J. Lu, Y. Qian, M. Altieri, H. Dong, J. Wang, K. Raina, J. Hines, J.D. Winkler,
A.P. Crew, K. Coleman, et al., Hijacking the E3 ubiquitin ligase cereblon to
[35] P. Ottis, C.M. Crews, Proteolysis-targeting chimeras: induced protein degra-
dation as a therapeutic strategy, ACS Chem. Biol. 12 (2017) 892e898, https://
[13] Matsuo,H., Li,H., McGuire,A.M., Fletcher,C.M., Gingras,A.-C., Sonenberg,N. and
Wagner,G. Structure of translation factor eIF4E bound to m7GDP and inter-
action with 4E-binding protein. Nat. Struct. Biol., 4, 717e724. https://doi.org/
[14] Marcotrigiano,J., Gingras,A.-C., Sonenberg,N. and Burley,S.K. Cocrystal Struc-
ture of the Messenger RNA 5 Cap-Binding Protein (eIF4E) Bound to 7-methyl-
[15] N. Sekiyama, H. Arthanari, E. Papadopoulos, R.A. Rodriguez-Mias, G. Wagner,
[36] H.-T. Huang, D. Dobrovolsky, J. Paulk, G. Yang, E.L. Weisberg, Z.M. Doctor,
D.L. Buckley, J.-H. Cho, E. Ko, J. Jang, et al., A chemoproteomic approach to
query the degradable kinome using a multi-kinase degrader, Cell Chem. Biol.
[37] T. Kaur, A. Menon, A.L. Garner, Synthesis of 7-benzylguanosine cap-analogue
conjugates for eIF4E targeted degradation, Eur. J. Med. Chem. 166 (2019)
ꢀ
M. Leger-Abraham, Molecular mechanism of the dual activity of 4EGI-1:
dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated
[38] D.W. McMillin, J. Delmore, E. Weisberg, J.M. Negri, D.C. Geer, S. Klippel,
N. Mitsiades, R.L. Schlossman, N.C. Munshi, A.L. Kung, et al., Tumor cell-
specific bioluminescence platform to identify stroma-induced changes to
[16] S. Grüner, D. Peter, R. Weber, L. Wohlbold, M.-Y. Chung, O. Weichenrieder,
E. Valkov, C. Igreja, E. Izaurralde, The structures of eIF4E-eIF4G complexes
reveal an extended interface to regulate translation initiation, Mol. Cell 64
[17] S. Grüner, R. Weber, D. Peter, M.-Y. Chung, C. Igreja, E. Valkov, E. Izaurralde,
Structural motifs in eIF4G and 4E-BPs modulate their binding to eIF4E to
regulate translation initiation in yeast, Nucleic Acids Res. 46 (2018)
ꢀ
[39] M. Ghandi, F.W. Huang, J. Jane-Valbuena, G.V. Kryukov, C.C. Lo, E.R. McDonald,
J. Barretina, E.T. Gelfand, C.M. Bielski, H. Li, et al., Next-generation charac-
terization of the cancer cell line encyclopedia, Nature 569 (2019) 503e508,
[18] S. Lukhele, A. Bah, H. Lin, N. Sonenberg, J.D. Forman-Kay, Interaction of the
eukaryotic initiation factor 4E with 4E-BP2 at a dynamic bipartite interface,
[19] C. Igreja, D. Peter, C. Weiler, E. Izaurralde, 4E-BPs require non-canonical 4E-
binding motifs and a lateral surface of eIF4E to repress translation, Nat.
[20] D. Peter, C. Igreja, R. Weber, L. Wohlbold, C. Weiler, L. Ebertsch,
O. Weichenrieder, E. Izaurralde, Molecular architecture of 4E-BP translational
[41] R.P. Nowak, S.L. DeAngelo, D. Buckley, Z. He, K.A. Donovan, J. An, N. Safaee,
M.P. Jedrychowski, C.M. Ponthier, M. Ishoey, et al., Plasticity in binding confers
selectivity in ligand-induced protein degradation, Nat. Chem. Biol. 14 (2018)
[42] M. de Wispelaere, G. Du, K.A. Donovan, T. Zhang, N.A. Eleuteri, J.C. Yuan,
J. Kalabathula, R.P. Nowak, E.S. Fischer, N.S. Gray, et al., Small molecule de-
graders of the hepatitis C virus protease reduce susceptibility to resistance
[21] A. Bah, R.M. Vernon, Z. Siddiqui, M. Krzeminski, R. Muhandiram, C. Zhao,
N. Sonenberg, L.E. Kay, J.D. Forman-Kay, Folding of an intrinsically disordered
protein by phosphorylation as
a
regulatory switch, Nature 519 (2015)
[43] F. Jeppesen, P. Ilium, Concentration of ampicillin in antral mucosa following
administration of ampicillin sodium and pivampicillin, Acta Otolaryngol. 73
[22] J.E. Dawson, A. Bah, Z. Zhang, R.M. Vernon, H. Lin, P.A. Chong, M. Vanama,
N. Sonenberg, C.C. Gradinaru, J.D. Forman-Kay, Non-cooperative 4E-BP2
folding with exchange between eIF4E-binding and binding-incompatible
states tunes cap-dependent translation inhibition, Nat. Commun. 11 (2020)
[23] N.J. Moerke, H. Aktas, H. Chen, S. Cantel, M.Y. Reibarkh, A. Fahmy, J.D. Gross,
A. Degterev, J. Yuan, M. Chorev, et al., Small-molecule inhibition of the
interaction between the translation initiation factors eIF4E and eIF4G, Cell 128
[24] E. Papadopoulos, S. Jenni, E. Kabha, K.J. Takrouri, T. Yi, N. Salvi, R.E. Luna,
E. Gavathiotis, P. Mahalingam, H. Arthanari, et al., Structure of the eukaryotic
translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric
mechanism for dissociating eIF4G, Proc. Natl. Acad. Sci. Unit. States Am. 111
[45] Nowak,R.P., Fischer,E.S., Gray,N.S., Zhang,T. and He,Z. Heterobifunctional
compounds with improved specificity for the bromodomain of brd4. (U.S.
[46] K.A. Donovan, F.M. Ferguson, J.W. Bushman, N.A. Eleuteri, D. Bhunia, S. Ryu,
L. Tan, K. Shi, H. Yue, X. Liu, et al., Mapping the degradable kinome provides a
resource for expedited degrader development, Cell 183 (2020) 1714e1731,
[47] T. Mori, T. Ito, S. Liu, H. Ando, S. Sakamoto, Y. Yamaguchi, E. Tokunaga,
N. Shibata, H. Handa, T. Hakoshima, Structural basis of thalidomide enan-
[48] L. Borissenko, M. Groll, 20S proteasome and its inhibitors: crystallographic
knowledge for drug development, Chem. Rev. 107 (2007) 687e717, https://
[49] A. Alhossary, S.D. Handoko, Y. Mu, C.-K. Kwoh, Fast, accurate, and reliable
molecular docking with QuickVina 2, Bioinformatics 31 (2015) 2214e2216,
[25] L. Chen, B.H. Aktas, Y. wang, X. He, R. Sahoo, N. Zhang, S. Denoyelle, E. Kabha,
H. Yang, R.Y. Freedman, et al., Tumor suppression by small molecule inhibitors
of translation initiation, Oncotarget
[26] E. Santini, T.N. Huynh, A.F. MacAskill, A.G. Carter, P. Pierre, D. Ruggero,
H. Kaphzan, E. Klann, Exaggerated translation causes synaptic and behavioural
aberrations associated with autism, Nature 493 (2013) 411e415, https://
[27] R. McMahon, I. Zaborowska, D. Walsh, Noncytotoxic inhibition of viral
infection through eIF4F-independent suppression of translation by 4EGi-1,
[28] C.A. Hoeffer, K.K. Cowansage, E.C. Arnold, J.L. Banko, N.J. Moerke, R. Rodriguez,
E.K. Schmidt, E. Klosi, M. Chorev, R.E. Lloyd, et al., Inhibition of the interactions
between eukaryotic initiation factors 4E and 4G impairs long-term associative
memory consolidation but not reconsolidation, Proc. Natl. Acad. Sci. Unit.
[29] R. Cencic, D.R. Hall, F. Robert, Y. Du, J. Min, L. Li, M. Qui, I. Lewis, S. Kurtkaya,
R. Dingledine, et al., Reversing chemoresistance by small molecule inhibition
of the translation initiation complex eIF4F, Proc. Natl. Acad. Sci. Unit. States
[30] D.P. Bondeson, B.E. Smith, G.M. Burslem, A.D. Buhimschi, J. Hines, S. Jaime-
Figueroa, J. Wang, B.D. Hamman, A. Ishchenko, C.M. Crews, Lessons in PROTAC
design from selective degradation with a promiscuous warhead, Cell Chem.
[31] S. An, L. Fu, Small-molecule PROTACs: an emerging and promising approach
for the development of targeted therapy drugs, EBioMedicine 36 (2018)
[50] O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of
docking with
a new scoring function, efficient optimization, and multi-
[51] H. Wang, F. Huang, J. Wang, P. Wang, W. Lv, L. Hong, S. Li, J. Zhou, The syn-
ergistic inhibition of breast cancer proliferation by combined treatment with
[52] M. Wu, C. Zhang, X.-J. Li, Q. Liu, S. Wanggou, Anti-cancer effect of cap-
translation inhibitor 4EGI-1 in human glioma U87 cells: involvement of
mitochondrial dysfunction and ER stress, Cell. Physiol. Biochem. 40 (2016)
[53] T. Murata, K. Shimotohno, Ubiquitination and proteasome-dependent degra-
dation of human eukaryotic translation initiation factor 4E, J. Biol. Chem. 281
[54] W.F. Vranken, W. Boucher, T.J. Stevens, R.H. Fogh, A. Pajon, M. Llinas,
E.L. Ulrich, J.L. Markley, J. Ionides, E.D. Laue, The CCPN data model for NMR
spectroscopy: development of
a software pipeline, Proteins 59 (2005)
[32] A.C. Lai, C.M. Crews, Induced protein degradation: an emerging drug discovery
[33] Winter,G.E., Buckley,D.L., Paulk,J., Roberts,J.M., Souza,A., Dhe-Paganon,S. and
Bradner,J.E. Phthalimide conjugation as a strategy for in vivo target protein
[55] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell,
A.J. Olson, AutoDock4 and AutoDockTools4: automated docking with selective
[56] N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch,
G.R. Hutchison, Open Babel: an open chemical toolbox, J. Cheminf. 3 (2011)
17