ACCEPTED MANUSCRIPT
density: convenient synthesis and enhanced second-order nonlinear optical effects. Macromolecules
2009;42:6463-72.
[23] Wang H, Liu F, Yang Y, Xu H, Peng C, Bo S, et al. Synthesis and optical nonlinear property of NLO
chromophores with alkoxy chains of different lengths using 8-hydroxy-1, 1, 7,
7-tetramethyl-formyljulolidine as donor. Dyes Pigm 2015;112:42-9.
[24] Wu J, Bo S, Wang W, Deng G, Zhen Z, Liu X, et al. Facile bromine-termination of nonlinear optical
chromophore: remarkable optimization in photophysical properties, surface morphology and
electro-optic activity. RSC Adv 2015;5:108-14.
[25] Wu JY, Liu JL, Zhou TT, Bo SH, Qiu L, Zhen Z, et al. Enhanced electro-optic coefficient (r(33)) in
nonlinear optical chromospheres with novel donor structure. RSC Adv 2012;2:1416-23.
[26] Wu JY, Bo SH, Liu JL, Zhou TT, Xiao HY, Qiu L, et al. Synthesis of novel nonlinear optical
chromophore to achieve ultrahigh electro-optic activity. Chem Commun 2012;48:9637-9.
[27] Xu H, Zhang M, Zhang A, Deng G, Si P, Huang H, et al. Novel second-order nonlinear optical
chromophores containing multi-heteroatoms in donor moiety: Design, synthesis, DFT studies and
electro-optic activities. Dyes Pigm 2014;102:142-9.
[28] Liu J, Bo S, Liu X, Zhen Z. Enhanced poling efficiency in rigid-flexible dendritic nonlinear optical
chromophores. J Incl Phenom Macrocycl Chem 2010;68:253-60.
[29] Andzelm J, Rinderspacher BC, Rawlett A, Dougherty J, Baer R, Govind N. Performance of DFT
methods in the calculation of optical spectra of TCF-chromophores. J Chem Theory Comput
2009;5:2835-46.
[30] Dalton LR, Benight S, Elder D, Song J. Integration of New Organic Electro-Optic Materials into
Silicon and Silicon Nitride Photonics and into Metamaterial and Plasmonic Device Structures. in
Frontiers in Optics 2011/Laser Science XXVII, OSA Technical Digest (Optical Society of America, 2011),
paper FWBB1.
[31] Xu H, Wang H, Fu M, Liu J, Liu X. Asymmetric dendrimers with improved electro-optic
performance: synthesis and characterization. RSC Adv 2016;6:44080-6.
[32] Li Z, Li Q, Qin J. New design strategies for second-order nonlinear optical polymers and
dendrimers. Polymer 2013;54:4351-82.
[33] Xu H, Fu M, Bo S, Liu X. Synthesis of asymmetric dendrimers with controllable chromophore
concentration and improved electro-optical performance. RSC Adv 2016;6:25023-7.
[34] Li Za, Wu W, Ye C, Qin J, Li Z. Two types of nonlinear optical polyurethanes containing the same
isolation groups: syntheses, optical properties, and influence of binding mode. J Phys Chem B
2009;113:14943-9.
[35] Li Za, Li Z, Di Ca, Zhu Z, Li Q, Zeng Q, et al. Structural Control of the Side-Chain Chromophores To
Achieve Highly Efficient Nonlinear Optical Polyurethanes. Macromolecules 2006;39:6951-61.
[36] Zhai G, Li X, Jin P, Semin S, Xiao J, Rasing T, et al. Functionalized twistacenes for solid state
nonlinear optical materials. Dyes Pigm 2018;149:876-81.
[37] Wu X, Xiao J, Sun R, Jia J, Yang J, Shi G, et al. Pyrene derivatives as broadband nonlinear optical
material: Magnitude and mechanism of transient refraction. Dyes Pigm. 2017;143:165-72.
[38] Li X, Semin S, Estrada LA, Yuan C, Duan Y, Cremers J, et al. Strong optical nonlinearities of
self-assembled polymorphic microstructures of phenylethynyl functionalized fluorenones. Chin Chem
Lett 2018; 29:297-300.
[39] Kim TD, Kang JW, Luo JD, Jang SH, Ka JW, Tucker N, et al. Ultralarge and thermally stable
electro-optic activities from supramolecular self-assembled molecular glasses. J Am Chem Soc
14