Organic Letters
Letter
134, 5750−5753. (n) Periana, R. A.; Mironov, O.; Taube, D.; Bhalla,
G.; Jones, C. Science 2003, 301, 814−818. (o) Periana, R. A.; Taube,
D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Science 1998, 280,
560−564. (p) Zhu, Y.; Wei, Y. Chem. Sci. 2014, 5, 2379−2382.
(4) (a) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968−6969.
(b) Shi, L.; Tu, Y.-Q.; Wang, M.; Zhang, F.-M.; Fan, C.-A.; Zhao, Y.-
M.; Xia, W.-J. J. Am. Chem. Soc. 2005, 127, 10836−10837. (c) Li, Z.;
Bohle, D. S.; Li, C.-J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 8928−
8933. (d) Zhang, Y.; Li, C.-J. Angew. Chem., Int. Ed. 2006, 45, 1949−
detailed mechanism are currently underway and will be
reported in due course.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experiment details and spectral data for all compounds are
provided. This material is available free of charge via the
́
1952. (e) Basle, O.; Li, C.-J. Org. Lett. 2008, 10, 3661−3663. (f) Li, Z.;
Yu, R.; Li, H. Angew. Chem., Int. Ed. 2008, 47, 7497−7500. (g) Ohta,
AUTHOR INFORMATION
Corresponding Authors
■
M.; Quick, M. P.; Yamaguchi, J.; Wunsch, B.; Itami, K. Chem.Asian.
̈
J. 2009, 4, 1416−1419. (h) Zhao, L.; Basle,
́
O.; Li, C.-J. Proc. Natl.
Acad. Sci. U. S. A. 2009, 106, 4106−4111. (i) Liu, P.; Zhou, C.-Y.;
Xiang, S.; Che, C.-M. Chem. Commun. 2010, 46, 2739−2741. (j) Chen,
L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li, H.; Xu, K.; Wan, X. Chem.
Eur. J. 2011, 17, 4085−4089. (k) Cui, Z.; Shang, X.; Shao, X.-F.; Liu,
Z.-Q. Chem. Sci. 2012, 3, 2853−2858. (l) Chen, W.; Wilde, R. G.;
Seidel, D. Org. Lett. 2013, 16, 730−732. (m) Guo, S.-r.; Yuan, Y.-q.;
Xiang, J.-n. Org. Lett. 2013, 15, 4654−4657. (n) Wei, W.-T.; Zhou, M.-
B.; Fan, J.-H.; Liu, W.; Song, R.-J.; Liu, Y.; Hu, M.; Xie, P.; Li, J.-H.
Angew. Chem., Int. Ed. 2013, 52, 3638−3641. (o) Xie, Z.; Cai, Y.; Hu,
H.; Lin, C.; Jiang, J.; Chen, Z.; Wang, L.; Pan, Y. Org. Lett. 2013, 15,
4600−4603. (p) Liu, D.; Liu, C.; Li, H.; Lei, A. Chem. Commun. 2014,
50, 3623−3626. (q) Modak, A.; Dutta, U.; Kancherla, R.; Maity, S.;
Bhadra, M.; Mobin, S. M.; Maiti, D. Org. Lett. 2014, 16, 2602−2605.
(5) (a) Deng, G.; Chen, W.; Li, C.-J. Adv. Synth. Catal. 2009, 351,
353−356. (b) Guin, S.; Rout, S. K.; Banerjee, A.; Nandi, S.; Patel, B. K.
Org. Lett. 2012, 14, 5294−5297. (c) Rout, S. K.; Guin, S.; Ghara, K. K.;
Banerjee, A.; Patel, B. K. Org. Lett. 2012, 14, 3982−3985. (d) Li, Z.;
Zhang, Y.; Zhang, L.; Liu, Z.-Q. Org. Lett. 2013, 16, 382−385.
(e) Majji, G.; Guin, S.; Gogoi, A.; Rout, S. K.; Patel, B. K. Chem.
Commun. 2013, 49, 3031−3033. (f) Zhao, J.; Fang, H.; Han, J.; Pan, Y.
Beilstein J. Org. Chem. 2013, 9, 1718−1723. (g) Li, Z.; Fan, F.; Yang, J.;
Liu, Z.-Q. Org. Lett. 2014, 16, 3396−3399. (h) Tran, B. L.; Li, B.;
Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 2555−2563.
(i) Zhou, S.-L.; Guo, L.-N.; Wang, S.; Duan, X.-H. Chem. Commun.
2014, 50, 3589−3591.
Author Contributions
∥D. Liu and Y. Li contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the 973 Program (2011CB808600,
2012CB725302), the National Natural Science Foundation of
China (21390400, 21025206, 21272180, 21302148 and
21372266), and the Research Fund for the Doctoral Program
of Higher Education of China (20120141130002) and the
Program for Changjiang Scholars and Innovative Research
Team in University (IRT1030). The Program of Introducing
Talents of Discipline to Universities of China (111 Program) is
also appreciated.
REFERENCES
■
(1) (a) Li, C.-J. Acc. Chem. Res. 2008, 42, 335−344. (b) Boorman, T.
C.; Larrosa, I. Chem. Soc. Rev. 2011, 40, 1910−1925. (c) Engle, K. M.;
Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2011, 45, 788−802.
(d) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780−
1824. (e) Shi, W.; Liu, C.; Lei, A. Chem. Soc. Rev. 2011, 40, 2761−
2776. (f) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc.
Rev. 2011, 40, 4740−4761. (g) Wendlandt, A. E.; Suess, A. M.; Stahl,
S. S. Angew. Chem., Int. Ed. 2011, 50, 11062−11087. (h) Yeung, C. S.;
Dong, V. M. Chem. Rev. 2011, 111, 1215−1292. (i) Neufeldt, S. R.;
Sanford, M. S. Acc. Chem. Res. 2012, 45, 936−946. (j) Gao, K.;
Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208−1219.
(6) (a) Antonchick, A. P.; Burgmann, L. Angew. Chem., Int. Ed. 2013,
52, 3267−3271. (b) Deng, G.; Zhao, L.; Li, C.-J. Angew. Chem., Int. Ed.
2008, 47, 6278−6282.
(7) For selected examples, see: (a) Liu, Q.; Jackstell, R.; Beller, M.
Angew. Chem., Int. Ed. 2013, 52, 13871−13873. (b) Liu, C.; Liu, D.;
Lei, A. Acc. Chem. Res. 2014, 47, 3459−3470.
(8) Fischer, H. Chem. Rev. 2001, 101, 3581−3610.
(9) Fessenden, R. W.; Eiben, K. J. Phys. Chem. 1971, 75, 1186−1201.
(10) (a) Lemaire, M. T. Pure Appl. Chem. 2004, 76, 277−293.
(b) Poli, R. Eur. J. Inorg. Chem. 2011, 1513−1530.
(2) (a) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40,
1976−1991. (b) Cossy, J.; Arseniyadis, S. C−H functionalization: A
new strategy for the synthesis of biologically active natural products.
Modern Tools for the Synthesis of Complex Bioactive Molecules; John
Wiley & Sons, Inc.: New York, 2012; pp 1−32.
(3) (a) Conde, A.; Vilella, L.; Balcells, D.; Díaz-Requejo, M. M.;
́ ́
Lledos, A.; Perez, P. J. J. Am. Chem. Soc. 2013, 135, 3887−3896.
̈
(11) (a) Demir, A. S.; Reis, O.; Emrullahoglu, M. J. Org. Chem. 2002,
68, 578−580. (b) Seiple, I. B.; Su, S.; Rodriguez, R. A.; Gianatassio, R.;
Fujiwara, Y.; Sobel, A. L.; Baran, P. S. J. Am. Chem. Soc. 2010, 132,
13194−13196. (c) Uchiyama, N.; Shirakawa, E.; Nishikawa, R.;
Hayashi, T. Chem. Commun. 2011, 47, 11671−11673. (d) Liu, D.; Liu,
C.; Li, H.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 4453−4456.
(e) Yan, G.; Yang, M.; Wu, X. Org. Biomol. Chem. 2013, 11, 7999−
8008. (f) Liu, D.; Liu, C.; Lei, A. Pure Appl. Chem. 2014, 86, 321.
(12) (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter
Mater. Phys. 1988, 37, 785−789. (b) Becke, A. D. J. Chem. Phys. 1993,
98, 5648−5652.
(13) For the plausible mechanism, there is another possibility that
Ni(acac)2 might conduct transmetalation with arylboronic acid to
generate an aryl-Ni(II) complex, which further reacted with cyclohexyl
radical to form a Ni(III) complex. Final reductive elimination of
Ni(III) complex delivered the desired product. We also conducted
DFT calculation to prove it. However, according to our calculation
results, this possibility could be excluded, see Figure S1 in the
Supporting Information for details.
(b) Gephart, R. T.; McMullin, C. L.; Sapiezynski, N. G.; Jang, E. S.;
Aguila, M. J. B.; Cundari, T. R.; Warren, T. H. J. Am. Chem. Soc. 2012,
134, 17350−17353. (c) Tran, B. L.; Driess, M.; Hartwig, J. F. J. Am.
Chem. Soc. 2014, 136, 17292−17301. (d) Chen, H.; Schlecht, S.;
Semple, T. C.; Hartwig, J. F. Science 2000, 287, 1995−1997. (e) Chen,
M. S.; White, M. C. Science 2007, 318, 783−787. (f) Davies, H. M. L.;
Manning, J. R. Nature 2008, 451, 417−424. (g) Deng, G.; Li, C.-J. Org.
Lett. 2009, 11, 1171−1174. (h) Deng, G.; Ueda, K.; Yanagisawa, S.;
Itami, K.; Li, C.-J. Chem.Eur. J. 2009, 15, 333−337. (i) Feng, J.;
Liang, S.; Chen, S.-Y.; Zhang, J.; Fu, S.-S.; Yu, X.-Q. Adv. Synth. Catal.
2012, 354, 1287−1292. (j) Guo, X.; Li, C.-J. Org. Lett. 2011, 13,
4977−4979. (k) Kamata, K.; Yonehara, K.; Nakagawa, Y.; Uehara, K.;
Mizuno, N. Nat. Chem. 2010, 2, 478−483. (l) Leskinen, M. V.;
́
́ ́
Madarasz, A.; Yip, K.-T.; Vuorinen, A.; Papai, I.; Neuvonen, A. J.;
Pihko, P. M. J. Am. Chem. Soc. 2014, 136, 6453−6462. (m) Leskinen,
M. V.; Yip, K.-T.; Valkonen, A.; Pihko, P. M. J. Am. Chem. Soc. 2012,
D
Org. Lett. XXXX, XXX, XXX−XXX