Communications to the Editor
J ournal of Medicinal Chemistry, 1997, Vol. 40, No. 15 2295
class of ligand to visualize nAChR in vivo with PET.7
The studies demonstrated a high brain uptake of [18F]-
1b in both baboon (12-15%) and mouse and high
specificity of its binding for nAChR in vivo. The high
thalamus to cerebellum ratio (4.0-4.5 in baboon at the
end of a 2-h study) used as the index for specific to
nonspecific binding provided a high signal-to-noise ratio
suggesting a new approach to investigate the nAChR
system and its role in neurodegeneration and addiction.
The synthesis of 2 and its conversion to 1b are shown
in Scheme 1. Reductive methylation of 10 using form-
aldehyde and sodium cyanoborohydride gives the 2-di-
methylamino compounds 12. Alkylation of 12 with
methyl iodide affords 7-(tert-butyloxycarbonyl)-exo-2-[2′-
(N,N,N-trimethylammoniumyl)-5′-pyridinyl]-7-azabicyclo-
[2.2.1]heptane iodide (2). Treatment of 2 with potas-
sium fluoride in dimethyl sulfoxide containing Kryptofix
gave a 75% yield of 11 which when treated with
hydrochloric acid provided 55% of 1b‚HCl. Details for
the synthesis of [18F]NFEP will be published elsewhere.
(8) Ding, Y.-S.; Gatley, S. J .; Fowler, J . S.; Volkow, N. D.; Aggarwal,
D.; Logan, J .; Dewey, S. L.; Liang, F.; Carroll, F. I.; Kuhar, M.
J . Mapping nicotinic acetylcholine receptors with PET. Society
for Neuroscience, Washington, DC, Nov. 16-21, 1996; Abstract
22, 269.
(9) Horti, A.; Ravert, H. T.; London, E. D.; Dannals, R. F. Synthesis
of a radiotracer for studying nicotinic acetylcholine receptors:
(+/-)-exo-2-(2-[18F]fluoro-5-pyridyl)-7-azabicyclo[2.2.1]heptane. J .
Labelled Compd. Radiopharm. 1996, 38 (4), 355-365.
(10) Horti, A.; Scheffel, U.; Dannals, R. F.; Stathis, M.; Finley, P. A.;
Ravert, H. T.; London, E. D. [18F] (()-exo-2-(2-Fluoro-5-pyridyl)-
7-azabicyclo[2.2.1]heptane. A radioligand for in vivo labeling and
imaging of central nicotinic actylcholine receptors. J . Nucl. Med.
1996, 37, 11P (abstract).
(11) Villemagne, V. L.; Horti, A.; Scheffel, U.; Ravert, H. T.; Finley,
P. A.; London, E. D.; Dannals, R. F. Imaging nicotinic acetyl-
choline receptors in baboon brain by PET J . Nucl. Med. 1996,
37, 11P (abstract).
(12) Huang, D. F.; Shen, T. Y. A versatile total synthesis of epiba-
tidine and analogs. Tetrahedron Lett. 1993, 34 (28), 4477-4480.
(13) Clayton, S. C.; Regan, A. C. A total synthesis of (()-epibatidine.
Tetrahedron Lett. 1993, 34, 7493-7496.
(14) Okabe, K.; Natsume, M. Total synthesis of a frog poison, (()-
epibatidine, a potent non-opioid analgesic. Chem. Pharm. Bull.
1994, 42 (7), 1432-1436.
(15) Kotian, P. L.; Carroll, F. I. Synthesis of (+)- and (-)-epibatidine.
Synth. Commun. 1995, 25 (1), 63-71.
(16) Broka, C. A. Total synthesis of epibatidine. Tetrahedron Lett.
1993, 34 (20), 3251-3254.
(17) Fletcher, S. R.; Baker, R.; Chambers, M. S.; Hobbs, S. C.;
Mitchell, P. J . Synthesis of (+)- and (-)-epibatidine. J . Chem.
Soc., Chem. Commun. 1993, 1216-1218.
(18) Corey, E. J .; Loh, T.-P.; AchyuthaRao, S.; Daley, D. C.; Sarshar,
S. Stereocontrolled total synthesis of (+)- and (-)-epibatidine.
J . Org. Chem. 1993, 58, 5600-5602.
In summary, an efficient synthesis of exo-2-(2′-fluoro-
5′-pyridinyl)-7-azabicyclo[2.2.1]heptane (1b) and epiba-
tidine (1a ) was developed. 7-(tert-Butyloxycarbonyl)-2-
exo-[2′-(N,N,N-trimethylammoniumyl)-5′-pyridinyl]-7-
azabicyclo[2.2.1]heptane (2) was synthesized as an
excellent precursor for the synthesis of [18F]-1b.
(19) Szantay, C.; Kardos-Balogh, Z.; Moldvai, I.; Szantay, C., J r.;
Major-Temesvary, E.; Blasko, G. A practical route to epibatidine.
Tetrahedron Lett. 1994, 35, 3171-3174.
(20) Senokuchi, K.; Nakai, H.; Kawamura, M.; Katsube, N.; Nonaka,
S.; Sawaragi, H.; Hamanaka, N. Synthesis and biological evalu-
ation of (()-epibatidine and the congeners. Synlett 1994, 343-
344.
(21) Sestanj, K.; Melenski, E.; J irkovsky, I. Synthesis of epibatidine.
Tetrahedron Lett. 1994, 35 (30), 5417-5420.
(22) Ko, S. Y.; Lerpiniere, J .; Linney, I. D.; Wrigglesworth, R. The
total synthesis of epibatidine. J . Chem. Soc., Chem. Commun.
1994, 1775-1776.
(23) Albertini, E.; Barco, A.; Benetti, S.; De Risi, C.; Pollini, G. P.;
Romagnoli, R.; Zanirato, V. Total synthesis of (()-epibatidine.
Tetrahedron Lett. 1994, 35 (49), 9297-9300.
(24) Grehn, L.; Ragnarsson, U. A convenient method for the prepara-
tion of 1-(tert-butyloxycarbonyl)pyrroles. Angew. Chem., Int. Ed.
Engl. 1984, 23, 296-297.
Ack n ow led gm en t. This research was supported in
part by a grant from Guilford Pharmaceuticals, Inc.
(Baltimore, MD), Fisons Pharmaceuticals (now Astra
Research Corp., Rochester, NY), Department of Energy,
Office of Health and Environmental Research, and
National Institutes of Health NS15380 and Grant
CTR402 from the Council of Tobacco Research.
Su p p or tin g In for m a tion Ava ila ble: Experimental data
for the synthesis of 1a , 2, 7-11, and 1b from 10, 11, or 2 and
the radioligand binding (7 pages). Ordering information is
found on any current masthead page.
Refer en ces
(25) Danso-Danquah, R.; Bai, X.; Zhang, X.; Mascarella, S. W.;
Williams, W.; Sine, B.; Bowen, W. D.; Carroll, F. I. Synthesis
and σ binding properties of 2′-substituted 5,9R-dimethyl-6,7-
benzomorphans. J . Med. Chem. 1995, 38, 2978-2985.
(26) Houghtling, R. A.; Davila-Garcia, M. I.; Kellar, K. J . Charac-
(1) Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J . C.;
Pannell, L.; Daly, J . W. Epibatidine: A novel (chloropyridyl)-
azabicycloheptane with potent analgesic activity from an Ecua-
doran poison frog. J . Am. Chem. Soc. 1992, 114, 3475-3478.
(2) Badio, B.; Daly, J . W. Epibatidine, a potent analgetic and
nicotinic agonist. Mol. Pharmacol. 1994, 45, 563-569.
(3) Fletcher, S. R.; Baker, R.; Chambers, M. S.; Herbert, R. H.;
Hobbs, S. C.; Thomas, S. R.; Verrier, H. M.; Watt, A. P.; Ball, R.
G. Total synthesis and determination of the absolute configu-
ration of epibatidine. J . Org. Chem. 1994, 59, 1771-1778.
(4) Sullivan, J . P.; Bannon, A. W. Epibatidine: Pharmacological
properties of a novel nicotinic acetylcholine receptor aginist and
analgesic agent. CNS Drug Rev. 1996, 2 (1), 21-39.
(5) Scheffel, U.; Taylor, G. F.; Kepler, J . A.; Carroll, F. I.; Kuhar,
M. J . In vivo labeling of neuronal nicotinic acetylcholine recep-
tors with radiolabeled isomers of norchloroepibatidine. Neu-
roReport 1995, 6 (18), 2483-2488.
(6) London, E. D.; Scheffel, U.; Kimes, A. S.; Kellar, K. J . In vivo
labeling of nicotinic acetylcholine receptors in bain with [3H]-
epibatidine. Eur. J . Pharmacol. 1995, 278, R1-R2.
3H]epibatidine binding to nicotinic cholinergic
receptors in rat and human brain. Mol. Pharmacol. 1995, 48,
280-287.
terization of (()-[
(27) Cheng, Y. C.; Prusoff, W. H. Relationship between inhibition
constants (Ki) and the concentration of inhibitor which causes
50% inhibition (IC50) of an enzyme reaction. Biochem. Pharma-
col. 1972, 22, 3099-3108.
(28) Under our experimental conditions, the concentration of free
ligand was not much (>10×) greater than the number of
receptors, a requirement if the binding data were to be analyzed
as a pseudo-first-order bimolecular reaction. The result is the
free ligand concentration and nonspecific binding will increase
with increasing concentration of test compound leading to an
underestimation of the Ki. However, for the purpose of this
communication, a comparison of the Kapp is sufficient to dem-
onstrate the potency of 1b relative to 1a and nicotine. Thus, more
sophisticated data analysis techniques designed to correct for
changes in free ligand concentration were not employed.
(7) Ding, Y.-S.; Gatley, S. J .; Fowler, J . S.; Volkow, N. D.; Aggarwal,
D.; Logan, J .; Dewey, S. L.; Liang, F.; Carroll, F. I.; Kuhar, M.
J . Mapping nicotinic acetylcholine receptors with PET. Synapse
1996, 24, 403-407.
J M970187D