10.1002/anie.201809133
Angewandte Chemie International Edition
COMMUNICATION
As summarized in Scheme 4 and Figure 1, our calculations
show that the transition state A-TSa leading to the spiro-
cyclopropanated product is slightly disfavored over A-TSb,
which gives the fused-cyclopropanated product, by 0.3 kcal/mol
in gas phase. This energy difference is slightly increased to 0.6
kcal/mol between D-TSa and D-TSb, when the PCy3 ligand is
used instead of PPh3. Interestingly, the molecular surface areas
of the two transition states are quite different and we found that
the transition states leading to the spiro-cyclopropanated
products A/D-TSa have larger surface areas of 543 and 548 Å2,
whereas 526 and 545 Å 2 are found in A/D-TSb, respectively.
Consequently, A/D-TSa have slightly higher solvation energy
than A/D-TSb, as illustrated in Figure 1. In p-Xylene with a
dielectric constant of 2.27, the difference in solvation energy is
not enough to reverse the order of the two transition states, and
D-TSb is calculated to be at 30.8 kcal/mol, which is slightly lower
than D-TSa at 31.1 kcal/mol. As the DMSO solvent is more polar,
the solvation energy difference becomes larger and ultimately
renders A-TSa slightly lower in energy than A-TSb, as illustrated
in Figure 1. Whereas these energy differences are too small to
be trusted in a quantitative sense, the qualitative rationale
behind these numbers is plausible, namely, the regioselectivity
is connected to the molecular surface area of the transition
states leading to the spiro-cycloproanated product being favored
in the more polar DMSO solvent.
Acknowledgements
This work was made possible by the support of the National Re-
search Foundation (NRF-2016R1A2B2013727). D. S. Chung
thanks to the Solvay Fellowship. We thank Dr Y. Kim for X-ray
analysis. We also thank Prof. S. Chang at KAIST for sharing
time-resolved infrared spectrometry. MHB acknowledges the
financial support from the Institute for Basic Science (IBS-R10-
D1).
Keywords: Divergent catalysis • Palladium • C-H activation •
Cyclopropanation • Indolines
[1]
a) L. Li, Z. Chen, X. Zhang, Y. Jia, Chem. Rev. 2018, 118,
3752-3832; b) J. Hou, A. Ee, W. Feng, J.-H. Xu, Y. Zhao,
J. Wu, J. Am. Chem. Soc. 2018, 140, 5257-5263; c) H.
Zhou, W. Chen, Z. Chen, Org. Lett. 2018, 20, 2590-2594;
d) F. A. Cruz, V. M. Dong, J. Am. Chem. Soc. 2017, 139,
1029-1032; e) Q.-Q. Cheng, M. Lankelma, D. Wherritt, H.
Arman, M. P. Doyle, J. Am. Chem. Soc. 2017, 139, 9839-
9842; f) T.-R. Li, L.-Q. Lu, Y.-N. Wang, B.-C. Wang, W.-J.
Xiao, Org. Lett. 2017, 19, 4098-4101; g) Y. Wei, M. Shi,
ACS Catal. 2016, 6, 2515-2524; h) J.-Y. Liao, P.-L. Shao,
Y. Zhao, J. Am. Chem. Soc. 2015, 137, 628-631.
[2]
a) N. Della Ca’, M. Fontana, E. Motti, M. Catellani, Acc.
Chem. Res. 2016, 49, 1389-1400; b) C. Liu, J. Yuan, M.
Gao, S. Tang, W. Li, R. Shi, A. Lei, Chem. Rev. 2015, 115,
12138-12204; c) L. Yang, H. Huang, Chem. Rev. 2015,
115, 3468-3517; d) J. Wencel-Delord, F. Glorius, Nat.
Chem. 2013, 5, 369; e) J. Yamaguchi, A. D. Yamaguchi, K.
Itami, Angew. Chem. Int. Ed. 2012, 51, 8960-9009; f) P. B.
Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012,
112, 5879-5918; g) J. Wencel-Delord, T. Dröge, F. Liu, F.
Glorius, Chem. Soc. Rev. 2011, 40, 4740-4761; h) O.
Baudoin, Chem. Soc. Rev. 2011, 40, 4902-4911; i) I. A. I.
Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F.
Hartwig, Chem. Rev. 2010, 110, 890-931; j) D. A. Colby, R.
G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624-
655; k) R. Jazzar, J. Hitce, A. Renaudat, J. Sofack-
Kreutzer, O. Baudoin, Chem. Eur. J. 2010, 16, 2654-2672.
a) L. Ping, D. S. Chung, J. Bouffard, S.-g. Lee, Chem. Soc.
Rev. 2017, 46, 4299-4328; b) J. A. Leitch, Y. Bhonoah, C.
G. Frost, ACS Catal. 2017, 7, 5618-5627; c) O. Daugulis,
J. Roane, L. D. Tran, Acc. Chem. Res. 2015, 48, 1053-
1064; d) Z. Huang, H. N. Lim, F. Mo, M. C. Young, G.
Dong, Chem. Soc. Rev. 2015, 44, 7764-7786; e) M. Zhang,
Y. Zhang, X. Jie, H. Zhao, G. Li, W. Su, Org. Chem. Front.
2014, 1, 843-895; f) G. Rouquet, N. Chatani, Angew.
Chem. Int. Ed. 2013, 52, 11726-11743; g) G. Rousseau, B.
Breit, Angew. Chem. Int. Ed. 2011, 50, 2450-2494; h) T. W.
Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169.
a) W. Du, Q. Gu, Z. Li, D. Yang, J. Am. Chem. Soc. 2015,
137, 1130-1135; b) J. M. Alderson, A. M. Phelps, R. J.
Scamp, N. S. Dolan, J. M. Schomaker, J. Am. Chem. Soc.
2014, 136, 16720-16723; c) J. Mahatthananchai, A. M.
Dumas, J. W. Bode, Angew. Chem. Int. Ed. 2012, 51,
10954-10990; d) A. Renaudat, L. Jean-Gérard, R. Jazzar,
C. E. Kefalidis, E. Clot, O. Baudoin, Angew. Chem. Int. Ed.
2010, 49, 7261-7265; e) A. Kros, W. Jesse, G. A.
[3]
Figure 1. DFT-calculated energies and solvation energy corrections. The unit
of energy is kcal/mol.
In summary, we have developed a conceptually distinctive
tandem Heck/regiodivergent C(sp3)-H bond activation reaction to
selectively construct both spiro- and fused-cyclopropanated
indolines starting from the same N-methallylated N-acyl-2-
bromoanilines. DFT-calculations suggest that the regioselectivity
is governed by the fact that the fused-product is favored in gas
phase and also in low dielectric media, where the solvation
energies are relatively small. The transition state leading to the
spiro-fused product shows a larger molecular surface and
becomes more favorable in high dielectric media. Further
studies on other solvent-driven divergent catalytic reactions are
currently underway.
[4]
Metselaar, J. J. L. M. Cornelissen, Angew. Chem. Int. Ed.
2005, 44, 4349-4352.
[5]
a) S. Arai, M. Nakajima, A. Nishida, Angew. Chem. Int. Ed.
2014, 53, 5569-5572; b) M. Zhang, F. Jovic, T. Vickers, B.
Dyck, J. Tamiya, J. Grey, J. A. Tran, B. A. Fleck, R. Pick,
A. C. Foster, C. Chen, Bioorg. Med. Chem. Lett. 2008, 18,
3682-3686.
This article is protected by copyright. All rights reserved.