Nu cleop h ilicities of Nitr oa lk yl An ion s
Thorsten Bug, Tadeusz Lemek, and Herbert Mayr*
Department Chemie und Biochemie der Ludwig-Maximilians-Universita¨t Mu¨nchen,
Butenandtstrasse 5-13 (Haus F), D-81377 Mu¨nchen, Germany
Herbert.Mayr@cup.uni-muenchen.de
Received J uly 19, 2004
The kinetics of the reactions of eight nitroalkyl anions (nitronate anions) with benzhydrylium ions
and quinone methides in DMSO and water were investigated photometrically. The second-order
rate constants were found to follow a Ritchie constant selectivity relationship with slightly smaller
selectivities than those observed previously for other carbanions and O or N nucleophiles. Evaluation
of the kinetic data by the correlation equation log k (20 °C) ) s(N + E) yields the nucleophilicity
parameters (N), which allow a comparison of the nucleophilicities of nitronates with those of other
classes of compounds. Although the aliphatic nitronates 1a -c are more nucleophilic than the
aromatic representatives 1d -h in DMSO, hydration reduces the nucleophilicities of aliphatic
nitronates by a factor of 1 million, which is considerably greater than the reduction of the reactivities
of the aromatic nitronates with the consequence that aromatic nitronates are more nucleophilic in
water than aliphatic ones. The nucleophilic reactivities of nitronates are only slightly affected by
substituent variation in DMSO and even less so in aqueous solution, which is considered to be the
reason for the unusual rate equilibrium relationships, the so-called nitroalkane anomaly. Outer-
sphere electron transfer does not occur in any of the reactions that were investigated.
SCHEME 1. P r oton a tion of Ar yl Nitr on a tes in
Wa ter
In tr od u ction
Relationships between nucleophilicity and basicity
belong to the fundamental concepts of the electronic
theory of organic chemistry.1,2 Thus, substituents R that
increase the basicity of carbanions are generally assumed
to also increase the nucleophilicity.2,3
This and related phenomena are termed nitroalkane
anomaly.5 As a consequence, in contrast to common
practices in preparative carbanion chemistry, pKaH values
cannot be employed for estimating the relative nucleo-
philicities of nitroalkyl anions, which are of great impor-
tance as reagents in organic synthesis.6
Previously, we have demonstrated that eq 1 can be
used for developing a comprehensive nucleophilicity
scale, including n-, π-, and σ-nucleophiles,7 and we have
suggested employing benzhydrylium ions and structur-
R-CH2Q + EX f R-CH2E + XQ
It has long been known, however, that acceptor groups
in the m- and p-positions of phenylnitromethyl anions
reduce basicity (as expected) but, at the same time,
increase the rate of conversion of the nitroalkyl anions
into the corresponding acids (kf in Scheme 1).4
(1) Brønsted, J . N.; Pedersen, K. Z. Phys. Chem. 1924, 108, 185-
235.
(2) Bordwell, F. G.; Cripe, T. A.; Hughes, D. L. In Nucleophilicity;
Harris, J . M., McManus, S. P., Eds.; American Chemical Society:
Washington, DC, 1987.
(5) (a) Bernasconi, C. F.; Ali, M.; Gunter, J . C. J . Am. Chem. Soc.
2003, 125, 151-157. (b) Yamataka, H.; Ammal, S. C. Arkivoc 2003,
59-68. (c) Eliad, L.; Hoz, S. J . Phys. Org. Chem. 2002, 15, 540-543.
(d) Yamataka, H.; Mustanir; Mishima, M. J . Am. Chem. Soc. 1999,
121, 10223-10224. (e) Beksic, D.; Betran, J .; Lluch, J . M.; Hynes, J .
T. J . Phys. Chem. A 1998, 102, 3977-3984. (f) Erden, I.; Keefe, J . R.;
Xu, F. P.; Zheng, J . B. J . Am. Chem. Soc. 1993, 115, 9834-9835. (g)
Bernasconi, C. F.; Paschalis, P. J . Am. Chem. Soc. 1989, 111, 5893-
5902. (h) Albery, W. J .; Bernasconi, C. F.; Kresge, A. J . J . Phys. Org.
Chem. 1988, 1, 29-31. (i) Pross, A.; Shaik, S. S. J . Am. Chem. Soc.
1982, 104, 1129-1130. (j) Agmon, N. J . Am. Chem. Soc. 1980, 102,
2164-2167. (k) Keeffe, J . R.; Morey, J .; Palmer, C. A.; Lee, J . C. J .
Am. Chem. Soc. 1979, 101, 1295-1297. (l) Kresge, A. J . Can. J . Chem.
1974, 52, 1897-1903. (m) Goumont, R.; Magnier, E.; Kizilian, E.;
Terrier, F. J . Org. Chem. 2003, 68, 6566-6570. (n) Terrier, F.;
Moutiers, G.; Pelet, S.; Buncel, E. Eur. J . Org. Chem. 1999, 1771-
1774. (o) Moutiers, G.; Peignieux, A.; Terrier, F. J . Chem. Soc., Perkin
Trans. 2 1998, 2489-2495. (p) Moutiers, G.; Thuet, V.; Terrier, F. J .
Chem. Soc., Perkin Trans. 2 1997, 1479-1486. (q) Marcus, R. A. J .
Am. Chem. Soc. 1969, 91, 7224-7225.
(3) (a) Bates, R. B.; Ogle, C. A. In Carbanion Chemistry-Reactivity
and Structure Concepts in Organic Chemistry; Hafner, K., Lehn, J .-
M., Rees, C. W., Schleyer, P. von R., Trost, B. M., Zahradnik, R., Eds.;
Springer-Verlag: Berlin, 1983; Vol. 17. (b) Buncel, E.; Dust, J . M.
Carbanion Chemistry-Structures and Mechanism; Oxford: New York,
2003. (c) Snieckus, V. Advances in Carbanion Chemistry; J AI: Green-
wich, CT, 1992 and 1996; Vols. 1 and 2. (d) Heathcock, C. H.;
Winterfeldt, E.; Schlosser, M. In Modern Synthetic Methods-Topics in
Carbanion Chemistry; Scheffold, R., Ed.; VHCA and VCH: Basel,
Switzerland, and Weinheim, Germany, 1992. (e) Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Pattenden, G., Eds.;
Pergamon Press: Oxford, 1991; Vol. 3, Chapters 1.1-1.7.
(4) (a) Fukuyama, M.; Flanagan, P. W. K.; Williams, F. T., J r.;
Frainier, L.; Miller, S. A.; Shechter, H. J . Am. Chem. Soc. 1970, 92,
4689-4699. (b) Bordwell, F. G.; Boyle, W. J ., J r.; Yee, K. C. J . Am.
Chem. Soc. 1970, 92, 5926-5932. (c) Bordwell, F. G.; Boyle, W. J ., J r.
J . Am. Chem. Soc. 1975, 97, 3447-3452. (d) Bernasconi, C. F.;
Wiersema, D.; Stronach, M. W. J . Org. Chem. 1993, 58, 217-223.
10.1021/jo048773j CCC: $27.50 © 2004 American Chemical Society
Published on Web 10/07/2004
J . Org. Chem. 2004, 69, 7565-7576
7565