Organic Letters
Letter
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
W.L. was supported by the Thailand Research Fund through
the Royal Golden Jubilee Ph.D. Program for the one-year
exchange fellowship to RWTH-Aachen University. We thank
Tengfei Ji for performing the large scale experiment.
Figure 1. Initial reactions with substrates bearing different
substituents on the α-Si atom.
REFERENCES
■
(1) For recent reviews on transition-metal-catalyzed cross-coupling
reactions, see: (a) de Meijere, A.; Diederich, F. In Metal-Catalyzed
Cross-Coupling Reactions, Vol. 1; Wiley−VCH: Weinheim, Germany,
2004. (b) Li, H.; Shi, Z.-J. in Homogeneous Catalysis for Unreactive
Bond Activation; John Wiley & Sons, Ltd.; Chichester, U.K., 2014; pp
575. (c) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J.
D.; MacMillan, D. W. C. Science 2016, 352, 1304−1308. (d) Tellis, J.
C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander,
G. A. Acc. Chem. Res. 2016, 49, 1429−1439. (e) Qi, X.; Li, Y.; Bai, R.;
Lan, Y. Acc. Chem. Res. 2017, 50, 2799−2808. (f) Feng, Z.; Xiao, Y.-
L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264−2278. (g) Shi, S.;
Nolan, S. P.; Szostak, M. Acc. Chem. Res. 2018, 51, 2589−2599.
(h) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015,
115, 9587−9652. (i) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117,
13810−13889. (j) Kaga, A.; Chiba, S. ACS Catal. 2017, 7, 4697−
4706. (k) Yu, D.-G.; Li, B.-J.; Shi, Z.-J. Acc. Chem. Res. 2010, 43,
1486−1495. (l) Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270−5298.
(m) Johnson, J. B.; Rovis, T. Angew. Chem., Int. Ed. 2008, 47, 840−
871. (n) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48,
2656−2670.
Scheme 3. Proposed Catalytic Cycle
elimination of B leads to arylsilane product, along with the
regenerated nickel(0) species, which is then able to re-enter
the catalytic cycle.
(2) For reviews on decarbonylative cross-couplings, see: (a) Guo, L.;
Rueping, M. Acc. Chem. Res. 2018, 51, 1185−1195. (b) Takise, R.;
Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, 46, 5864−5888.
(c) Guo, L.; Rueping, M. Chem. - Eur. J. 2018, 24, 7794−7809.
(3) (a) Murakami, M.; Amii, H.; Ito, Y. Nature 1994, 370, 540−541.
(b) Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. J. Am. Chem. Soc.
1996, 118, 8285−8290.
In summary, we describe a new nickel-catalyzed intra-
molecular decarbonylative silylation of silyl ketones. The
method is attractive because it makes use of an inexpensive
catalytic system and avoids the use of exogenous bases,
strained or directing group-containing substrates, or activated
esters and amides and generates CO as the only byproduct.
The protocol tolerates various functional groups, including
heterocycles and natural product derivatives and affords
products in good yields. Given the efficiency of this approach,
it is anticipated that it will find consideration in expanding the
field of strong σ-bond activation via nickel catalysis.
(4) (a) Masuda, Y.; Hasegawa, M.; Yamashita, M.; Nozaki, K.;
Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2013, 135, 7142−7145.
(b) Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani,
N. J. Am. Chem. Soc. 2017, 139, 1416−1419. (c) Zhao, T.-T.; Xu, W.-
H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. J. Am. Chem. Soc. 2018, 140, 586−
589. (d) Lei, Z.-Q.; Li, H.; Li, Y.; Zhang, X.-S.; Chen, K.; Wang, X.;
Sun, J.; Shi, Z.-J. Angew. Chem., Int. Ed. 2012, 51, 2690−2694.
(e) Somerville, R. J.; Martin, R. Angew. Chem., Int. Ed. 2017, 56,
6708−6710. (f) Whittaker, R. E.; Dong, G. Org. Lett. 2015, 17, 5504−
5507. (g) Dermenci, A.; Whittaker, R. E.; Gao, Y.; Cruz, F. A.; Yu, Z.-
X.; Dong, G. Chem. Sci. 2015, 6, 3201−3210. (h) Dermenci, A.;
Whittaker, R. E.; Dong, G. Org. Lett. 2013, 15, 2242−2245.
(5) (a) Tsuji, J.; Ohno, K. Tetrahedron Lett. 1965, 6, 3969−3971.
(b) Ding, K.; Xu, S.; Alotaibi, R.; Paudel, K.; Reinheimer, E. W.;
Weatherly, J. J. Org. Chem. 2017, 82, 4924−4929. (c) Fristrup, P.;
Kreis, M.; Palmelund, A.; Norrby, P.-O.; Madsen, R. J. Am. Chem. Soc.
2008, 130, 5206−5215.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Detailed experimental procedures, spectral data for all
compounds, and copies of 1H, 13C, and 19F NMR
(6) Malapit, C. A.; Ichiishi, N.; Sanford, M. S. Org. Lett. 2017, 19,
4142−4145.
(7) Liu, X.; Yue, H.; Jia, J.; Guo, L.; Rueping, M. Chem. - Eur. J.
2017, 23, 11771−11775.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(8) Takise, R.; Isshiki, R.; Muto, K.; Itami, K.; Yamaguchi, J. J. Am.
Chem. Soc. 2017, 139, 3340−3343.
(9) (a) Osakada, K.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett.
́
1987, 28, 6321−6324. (b) Ichiishi, N.; Malapit, C. A.; Wozniak, Ł.;
Sanford, M. S. Org. Lett. 2018, 20, 44−47. (c) Kato, T.; Kuniyasu, H.;
C
Org. Lett. XXXX, XXX, XXX−XXX