Journal of the American Chemical Society
COMMUNICATION
Grant-in-Aid 20108010 (S.F.), and the Global COE Program
from the Ministry of Education, Culture, Sports, Science and
Technology, Japan (S.F.)
(20) Lee, J. Y.; Lee, Y.-M.; Kotani, H.; Nam, W.; Fukuzumi, S. Chem.
Commun. 2009, 704–706.
(
21) Zhu, X.-Q.; Zhang, M.-T.; Yu, A.; Wang, C.-H.; Cheng, J.-P. J.
Am. Chem. Soc. 2008, 130, 2501–2516.
22) Francisco, W. A.; Blackburn, N. J.; Klinman, J. P. Biochemistry
003, 42, 1813–1819.
23) Bollinger, J. M., Jr.; Krebs, C. Curr. Opin. Chem. Biol. 2007, 11,
51–158.
24) de la Lande, A.; Parisel, O.; G ꢀe rard, H.; Moliner, V.; Reinaud, O.
Chem.;Eur. J. 2008, 14, 6465–6473.
25) For BNAH, no organic products besides BNA were detected
(
’
REFERENCES
2
(
1) (a) Holm, R. H.; Kennepohl, P.; Solomon, E. I. Chem. Rev. 1996,
6, 2239–2314. (b) Solomon, E. I.; Chen, P.; Metz, M.; Lee, S.-K.;
Palmer, A. E. Angew. Chem., Int. Ed. 2001, 40, 4570–4590.
2) (a) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev.
(
9
1
(
(
þ
2
004, 104, 1013–1045. (b) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004,
(
104, 1047–1076.
in the reaction mixture. The sole inorganic product identified was the
trans-peroxo complex 2, though it accounted for only ∼50% of the total
copper content in the reaction. Several pathways that lead to 2 following
sequential HAT/electron transfer to 1 may be envisioned, giving a
(
(
3) Itoh, S. Curr. Opin. Chem. Biol. 2006, 10, 115–122.
4) (a) Quant Hatcher, L.; Karlin, K. D. J. Biol. Inorg. Chem. 2004, 9,
669–683. (b) Himes, R. A.; Karlin, K. D. Curr. Opin. Chem. Biol. 2009,
13, 119–131.
putative Cu(I)-OOH moiety that could “trap” an equivalent of 1 to give
-
(
(
5) Cramer, C. J.; Tolman, W. B. Acc. Chem. Res. 2007, 40, 601–608.
6) (a) Klinman, J. P. Chem. Rev. 1996, 96, 2541–2561. (b) Klinman,
2
and HO
2
. This would lead to consumption of 2 equiv of 1 per
equivalent of substrate and explain the close-to-50% (as opposed to
þ
J. P. J. Biol. Chem. 2006, 281, 3013–3016. (c) Prigge, S. T.; Eipper, B. A.;
Mains, R. E.; Amzel, L. M. Science 2004, 304, 864–867.
quantitative) yield of BNA . The trans-peroxo species 2 was not reactive
toward BNAH at -125 °C and decomposed only very slowly in the
(
7) Chen, P.; Solomon, E. I. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
3105–13110.
8) (a) Evans, J. P.; Ahn, K.; Klinman, J. P. J. Biol. Chem. 2003, 278,
9691–49698. (b) Bauman, A. T.; Yukl, E. T.; Alkevich, K.; McCormack,
presence of large excesses of BzImH. Further incubation of the final
þ
1
reaction mixture did not lead to higher detected yields of BNA , i.e.,
(
other copper species present following the conclusion of the reaction did
not react with the substrate at the temperature examined.
4
A. L.; Blackburn, N. J. J. Biol. Chem. 2006, 281, 4190–4198.
9) (a) Chen, P.; Solomon, E. I. J. Am. Chem. Soc. 2004, 126, 4991–
(
5000. (b) Chen, P.; Bell, J.; Eipper, B. A.; Solomon, E. I. Biochemistry
2
004, 43, 5735–5747. (c) Comba, P.; Knoppe, S.; Martin, B.; Rajaraman,
G.; Rolli, C.; Shapiro, B.; Stork, T. Chem.;Eur. J. 2008, 14, 344–357.
10) (a) Maiti, D.; Lee, D.-H.; Gaoutchenova, K.; W €u rtele, C.;
(
Holthausen, M. C.; Narducci Sarjeant, A. A.; Sundermeyer, J.; Schindler,
S.; Karlin, K. D. Angew. Chem., Int. Ed. 2008, 47, 82–85. (b) Maiti, D.;
Narducci Sarjeant, A. A.; Karlin, K. D. Inorg. Chem. 2008, 47, 8736–8747.
(11) (a) Decker, A.; Solomon, E. I. Curr. Opin. Chem. Biol. 2005, 9,
152–163. (b) Yoshizawa, K.; Kihara, N.; Kamachi, T.; Shiota, Y. Inorg.
Chem. 2006, 45, 3034–3041. (c) Crespo, A.; Martí, M. A.; Roitberg,
A. E.; Amzel, L. M.; Estrin, D. A. J. Am. Chem. Soc. 2006, 128, 12817–
1
2828. (d) Huber, S. M.; Ertem, M. Z.; Aquilante, F.; Gagliardi, L.;
Tolman, W. B.; Cramer, C. J. Chem.;Eur. J. 2009, 15, 4886–4895.
12) Maiti, D.; Fry, H. C.; Woertink, J. S.; Vance, M. A.; Solomon,
E. I.; Karlin, K. D. J. Am. Chem. Soc. 2007, 129, 264–265.
13) Kunishita, A.; Kubo, M.; Sugimoto, H.; Ogura, T.; Sato, K.;
Takui, T.; Itoh, S. J. Am. Chem. Soc. 2009, 131, 2788–2789.
14) (a) Yamaguchi, S.; Wada, A.; Funahashi, Y.; Nagatomo, S.;
Kitagawa, T.; Jitsukawa, K.; Masuda, H. Eur. J. Inorg. Chem. 2003, 4378–
(
(
(
II
2- 2þ
2
4
386.(b) [{(LCu )} (O )]
(2) possesses distinctive UV-vis
2
-
1
absorptions and a ν(O-O) of 837 cm
.
(
15) See the Supporting Information.
18
16
(16) The complex formed with
O
2
had a small O contamination
2
-
1
estimated to be 18% from the weak O-O feature at 1130 cm observed
in the O sample spectrum. The signal of the O sample was scaled and
subtracted from the O spectrum in the analysis of the Cu- O
vibrational region.
18
16
1
8
18
-
1
(
17) A resonance-enhanced peak at 485 cm was observed for the
16
complex formed with O , together with a less intense peak at
4
at 468 and 448 cm , with their relative intensities reversed in com-
parison with the spectrum of the O sample. This pattern also indicates
a Fermi resonance with a nonenhanced mode at similar energy, in this
2
-
1
18
52 cm . For the complex formed with
O
2
, two peaks were observed
-
1
16
16
18
case for both the Cu- O and Cu- O spectra. From the analysis (see
the Supporting Information), the preinteraction Cu-O stretching
16
-1
18
frequency for the O complex is at 482 cm and that for the
O
-
1
complex is at 462 cm
18) Wada, A.; Harata, M.; Hasegawa, K.; Jitsukawa, K.; Masuda, H.;
Mukai, M.; Kitagawa, T.; Einaga, H. Angew. Chem., Int. Ed. 1998, 37, 798–799.
19) (a) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am.
.
(
(
Chem. Soc. 1987, 109, 305–316. (b) Yuasa, J.; Fukuzumi, S. J. Am. Chem.
Soc. 2006, 128, 14281–14293.
1
705
dx.doi.org/10.1021/ja110466q |J. Am. Chem. Soc. 2011, 133, 1702–1705