Full Paper
[
[
16] a) L. M. D. Rodoriguez, A. J. M. Lubag, C. R. Malloy, G. V. Martinez, R. J.
Gillies, A. D. Sherry, Acc. Chem. Res. 2009, 42, 948–957; b) L. N. Goswami,
L. Ma, S. Chakravarty, Q. Cai, S. S. Jalisatgi, M. F. Hawthorne, Inorg. Chem.
Z. Xie, Coord. Chem. Rev. 2007, 251, 2452–2476; d) J. F. Valliant, K. J.
Guenther, A. S. King, P. Morel, P. Schaffer, O. O. Sogbein, K. A. Stephenson,
Coord. Chem. Rev. 2002, 232, 173–230; e) A. N. Alexandrova, A. I. Bold-
yrev, H.-J. Zhai, L.-S. Wang, Coord. Chem. Rev. 2006, 250, 2811–2866; f) F.
Issa, M. Kassiou, L. M. Rendina, Chem. Rev. 2011, 111, 5701–5722.
[26] J. Brynda, P. Mader, V. Šícha, M. Fábry, K. Poncová, M. Bakardiev, B. Grüner,
P. Cígler, P. Řezácová, Angew. Chem. Int. Ed. 2013, 52, 13760–13763;
Angew. Chem. 2013, 125, 14005.
2013, 52, 1694–1700.
17] For NMR/MRI probes for Zn2+, see: a) K. Hanaoka, K. Kikuchi, Y. Urano, T.
Nagano, J. Chem. Soc. Perkin Trans. 2 2001, 1840–1843; b) K. Hanaoka, K.
Kikuchi, Y. Urano, M. Narazaki, T. Yokawa, S. Sakamoto, K. Yamaguchi, T.
Nagano, Chem. Biol. 2001, 9, 1027–1032; c) R. Trokowski, J. Ren, F. K.
Kalman, A. D. Sherry, Angew. Chem. Int. Ed. 2005, 44, 6920–6923; Angew.
Chem. 2005, 117, 7080; d) X. Zhang, K. S. Lovejoy, A. Jasanoff, S. J. Lip-
pard, Proc. Natl. Acad. Sci. USA 2007, 104, 10780–10785; e) J. L. Major, G.
Parigi, C. Luchinat, T. J. Meade, Proc. Natl. Acad. Sci. USA 2007, 104,
[27] S. Fujii, H. Masuno, Y. Taoda, A. Kano, A. Wongmayura, M. Nakabayashi, N.
Ito, M. Shimizu, E. Kawachi, T. Hirano, Y. Endo, A. Tanatani, H. Kagechika,
J. Chem. Am. Soc. 2011, 133, 20933–20941.
[28] a) S. Fujii, A. Yamada, K. Tomita, M. Nagano, T. Goto, K. Ohta, T. Harayama,
Y. Endo, H. Kagechika, Med. Chem. Commun. 2011, 2, 877–880; b) T. Goto,
K. Ohta, S. Fujii, S. Ohta, Y. Endo, J. Med. Chem. 2010, 53, 4917–4926; c)
S. Fujii, T. Goto, K. Ohta, Y. Hashimoto, T. Suzuki, S. Ohta, Y. Endo, J. Med.
Chem. 2005, 48, 4654–4662; d) S. Fujii, Y. Hashimoto, T. Suzuki, S. Ohta,
Y. Endo, Bioorg. Med. Chem. Lett. 2005, 15, 227–230; e) Y. Endo, T. Iijima,
Y. Yamakoshi, M. Yamaguchi, H. Fukasawa, K. Shudo, J. Med. Chem. 1999,
42, 1501–1504; f) Y. Endo, T. Iijima, Y. Yamakoshi, H. Fukasawa, C. Miyaura,
M. Inada, A. Kubo, A. Itai, Chem. Biol. 2001, 8, 341–355; g) Y. Endo, T.
Yoshimi, K. Ohta, T. Suzuki, S. Ohta, J. Med. Chem. 2005, 48, 3941–3944.
[29] a) T. Iijima, Y. Endo, M. Tsuji, E. Kawachi, H. Kagechika, K. Shudo, Chem.
Pharm. Bull. 1999, 47, 398–404; b) K. Ohta, T. Iijima, E. Kawachi, H. Kage-
chika, Y. Endo, Bioorg. Med. Chem. Lett. 2004, 14, 5913–5918; c) R. N.
Grimes, Carboranes, 2nd ed.; Academic Press, New York, 2011.
13881–13886; f) J. L. Major, R. M. Boiteau, T. J. Meade, Inorg. Chem. 2008,
4
7, 10788–10795; g) A. C. Esqueda, J. A. Lopez, G. Andreu-de-Riquer, J. C.
Alvarado-Monzon, J. Ratnakar, A. J. M. Lubag, A. D. Sherry, L. M. D. Leon-
Rodríguez, J. Am. Chem. Soc. 2009, 131, 11387–11391; h) Y. You, E. To-
mad, K. Hwang, T. Atanasijevic, W. Nam, A. P. Jasanoff, S. J. Lippard, Chem.
Commun. 2010, 46, 4139–4141; i) R. Macrae, P. Bagchi, S. Sumalekshmy,
C. J. Fahrni, Chem. Rev. 2009, 109, 4780–4872.
[
18] NMR/MRI probes for Cu2+: a) E. L. Que, C. J. Chang, J. Am. Chem. Soc.
2006, 128, 15942–15943; b) E. L. Que, E. Gianolio, S. L. Baker, A. P. Wong,
S. Aime, C. J. Chang, J. Am. Chem. Soc. 2009, 131, 8527–8536.
19] NMR/MRI probes for Fe2+ and Mn : a) R. Ruloff, G. Van Koten, A. E.
Merbach, Chem. Commun. 2004, 842–843; b) J. B. Livramento, E. Toth, A.
Sour, A. Borel, A. E. Merbach, R. Ruloff, Angew. Chem. Int. Ed. 2005, 44,
2+
[
1
480–1484; Angew. Chem. 2005, 117, 1504; c) J. Paris, C. Gameiro, V.
Humblet, P. K. Mohapatra, V. Jacques, J. F. Desreux, Inorg. Chem. 2006,
5, 5092–5102.
[30] a) M. Scholz, E. Hey-Hawkins, Chem. Rev. 2011, 111, 7035–7062; b) V. I.
Bregradze, Chem. Rev. 1992, 92, 209–223.
4
[31] a) T. U. Probst, J. Fresenius, Anal. Chem. 1999, 364, 391–403; b) R. F. Barth,
J. A. Coderre, G. H. Vicente, T. E. Blue, Clin. Cancer Res. 2005, 11, 3987–
4002; c) R. F. Barth, M. G. H. Vincente, O. K. Harling, W. S. Kiger III, K. J.
Riley, P. J. Binns, F. M. Wagner, M. Suzuki, T. Aihara, I. Kato, S. Kawabata,
Radiat. Oncol. 2012, 7, 146; d) Z. Yinghuan, K. C. Yan, J. A. Maguire, N. S.
Hosmane, Curr. Chem. Biol. 2007, 1, 141–149; e) N. S. Hosmane, J. A.
Maguire, Y. Zhu, M. Takagaki, Boron and Gadolinium Neutron Capture
Therapy for Cancer Treatment, World Scientific, Singapore, 2012; f) M.
Takagaki, Y. Oda, S. Miyatake, H. Kikuchi, T. Kobayashi, Y. Sakurai, M.
Osawa, K. Mori, K. Ono, J. Neuro-Oncol. 1997, 35, 177–185.
[
20] For NMR/MRI probes for Ca2+, see: a) W. Li, S. E. Fraser, T. J. Meade, J.
Am. Chem. Soc. 1999, 121, 1413–1414; b) W. Li, G. Parigi, M. Fragai, C.
Luchinat, T. J. Meade, Inorg. Chem. 2002, 41, 4018–4024; c) T. Atanasi-
jevic, M. Shusteff, P. Fam, A. Jasanoff, Proc. Natl. Acad. Sci. USA 2006, 103,
1
4707–14712; d) G. Angelovski, P. Fouskova, I. Mamedov, S. Canals, E.
Toth, N. K. Logothetis, ChemBioChem 2008, 9, 1729–1734; e) K. Dhingra,
M. E. Maier, M. Beyerlein, G. Angelovski, N. K. Logothetis, Chem. Commun.
2
N. K. Logothetis, E. Toth, J. Biol. Inorg. Chem. 2008, 13, 35–46; g) A.
Mishra, P. Fouskova, G. Angelovski, E. Balogh, A. K. Mishra, N. K. Logothe-
tis, E. Toth, Inorg. Chem. 2008, 47, 1370–1381; h) S. Khatua, S. H. Choi, J.
Lee, J. O. Huh, Y. Do, D. G. Churchill, Inorg. Chem. 2009, 48, 1799–1801;
i) T. Atanasijevic, X. Zhang, S. J. Lippard, A. Jasanoff, Inorg. Chem. 2010,
008, 3444–3446; f) K. Dhingra, P. Fouskova, G. Angelovski, M. E. Maier,
[32] a) R. A. Wiesboeck, M. F. Hawthorne, J. Am. Chem. Soc. 1964, 86, 1642–
1643; b) L. I. Zakharkin, V. N. Kalinin, Tetrahedron Lett. 1965, 6, 407–409;
c) M. F. Hawthorne, D. C. Young, P. M. Garrett, D. A. Owen, S. G. Schwerin,
F. N. Tebbe, J. A. Wegner, J. Am. Chem. Soc. 1968, 90, 862–868; d) T. D.
Getman, Inorg. Chem. 1998, 37, 3422–3423; e) M. A. Fox, W. R. Gill, P. L.
Herbertson, J. A. H. Macbride, K. Wade, Polyhedron 1996, 15, 565–571; f)
M. A. Fox, K. J. Wade, Organomet. Chem. 1999, 573, 279–291; g) J. Yoo,
J.-H. Hwang, Y. Do, Inorg. Chem. 2001, 40, 568–570; h) C. E. Willans, C. A.
Kilner, M. A. Fox, Chem. Eur. J. 2010, 16, 10644–10648; i) F. Tebbe, P. M.
Garrett, M. F. Hawthorne, J. Am. Chem. Soc. 1964, 86, 4222–4223.
[33] a) D. C. Young, D. V. Howe, M. F. Howthorne, J. Am. Chem. Soc. 1969, 91,
859–862; b) S. Heřmánek, T. Jelínek, J. Plešek, B. Štíbr, J. Fusek, Collect.
Czech. Chem. Commun. 1988, 53, 2742–2752; c) J. Plešek, T. Jelínek, F.
Mareš, S. Heřmánek, Collect. Czech., Chem. Commun. 1993, 58, 1534–
1547; d) V. I. Stanko, V. Brattsev, J. Gen. Chem. USSR (Engl. Transl) 1967,
37, 486; e) V. I. Stanko, V. Brattsev, J. Gen. Chem. USSR (Engl. Transl) 1968,
38, 636; f) V. I. Stanko, V. Brattsev, Dokl. Akad. Nauk SSSR 1967, 172, 1343.
[34] See: M. F. Hawthrone, D. C. Young, T. D. Andrews, D. V. Howe, R. L. Pilling,
A. D. Pitts, M. Reintjes, L. F. Warren Jr., P. A. Wegner, J. Am. Chem. Soc.
1968, 90, 879–896 [it is reported that nido-forms of o-carborane and
4
9, 2589–2591.
[
[
21] For MRI probes for Ca2+, K+ and Mg2+, see: H. Hifumi, A. Tanimoto, D.
Citterio, H. Komatsu, K. Suzuki, Analyst 2007, 132, 1153–1160.
22] a) G. W. Kabalka, C. Tang, P. Bendel, J. Neuro-Oncol. 1997, 33, 153–161;
b) P. Bendel, NMR Biomed. 2005, 18, 74–82; c) K. M. Bradshaw, M. P.
Schweizer, G. H. Glover, J. R. Hadley, R. Tippets, P. P. Tang, W. L. Davis,
M. P. Heilbrun, S. Johnson, T. Ghanem, Magn. Reson. Med. 1995, 34, 48–
5
2
6; d) G. W. Kabalka, M. Davis, P. Bendel, Magn. Reson. Med. 1998, 8,
31–237; e) S. Hermanek, Chem. Rev. 1992, 92, 325–362; f) Y. Zhu, N. S.
Hosmane, Future Med. Chem. 2013, 5, 705–714; g) D. V. Hingorani, A. S.
Bernstein, M. D. Pagel, Contrast. Media. Mol. Imaging 2014, 10, 245–265;
h) L. Ronconi, P. J. Sadler, Coord. Chem. Rev. 2008, 252, 2239–2277; i)
P. P. Z. Tang, M. P. Schweizer, K. M. Bradshaw, W. F. Bauer, Biochem. Phar-
macol. 1995, 49, 625–632.
[
[
23] M. Kitamura, T. Suzuki, R. Abe, T. Ueno, S. Aoki, Inorg. Chem. 2011, 50,
1
1568–11580.
2
+
24] For reviews of metal complexes of macrocyclic polyamines, see: a) E.
Kimura, T. Koike, Chem. Soc. Rev. 1998, 27, 179–184; b) S. Aoki, E. Kimura,
Chem. Rev. 2004, 104, 769–787; c) S. Itoh, S. Sonoike, M. Kitamura, S.
Aoki, Int. J. Mol. Sci. 2014, 15, 2087–2118; d) E. Kimura, Bull. Jpn. Coord.
Chem. 2012, 59, 26–47; e) S. Aoki, M. Zulkefeli, M. Kitamura, Y. Hisamatsu,
in: Synergy in Supramolecular Chemistry (Ed.: T. Nabeshima), CRC, Boca
Raton, FL, USA, 2015, p. 33–56; f) F. Liang, S. Wan, Z. Li, X. Xiong, L. Yang,
X. Zhou, C. Wu, Curr. Med. Chem. 2006, 13, 711–727; g) A. Bencini, V.
Lippolis, B. Valtancoli, Inorg. Chim. Acta 2014, 417, 38–58; h) A. E. Har-
grove, S. Nieto, T. Zhang, J. L. Sessler, E. V. Anslyn, Chem. Rev. 2011, 111,
2
Cu form a 2:1 complex (nido-5) Cu, which is unstable in the air, al-
though full decomposition products were not analyzed].
35] E. Kimura, S. Aoki, T. Koike, M. Shiro, J. Am. Chem. Soc. 1997, 119, 3068–
3076.
[
[36] a) R. J. Schaeffer, J. Am. Chem. Soc. 1957, 79, 1006–1007; b) T. L. Heying,
J. W. Ager Jr., S. L. Clark, D. J. Mangold, H. L. Goldstein, M. Hillman, R. J.
Polak, J. W. Szymanski, Inorg. Chem. 1963, 2, 1089–1092.
[37] H. Nakamura, K. Aoyagi, Y. Yamamoto, J. Am. Chem. Soc. 1998, 120, 1167–
1171.
[38] K. Ohta, S. Koohno, Y. Endo, Chem. Pharm. Bull. 2009, 57, 307–310.
1
1
6603–6782.
[39] As suggested by reviewers, B reference frequency can be calculated
1
[
25] a) M. F. Hawthorne, A. Mandera, Chem. Rev. 1999, 99, 3421–3434; b) P.
Kaszyuski, Collect Czech. Chem. Commun. 1999, 64, 895–926; c) L. Deng,
from H NMR signal of TMS. BF ·Et O was used as an external reference
3
2
in this work for the following two reasons. One is to measure accurate
Eur. J. Inorg. Chem. 2016, 1819–1834
www.eurjic.org
1833
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim