Notes and references
1 (a) S. J. Danishefsky and T. Kitahara, J. Am. Chem. Soc., 1974, 96,
7807; (b) S. J. Danishefsky, H. G. Selnick, R. E. Zelle and
M. P. DeNinno, J. Am. Chem. Soc., 1988, 110, 4368.
2 For reviews, see: (a) S. J. Danishefsky and M. P. DeNinno, Angew.
Chem., Int. Ed. Engl., 1987, 26, 15; (b) E. J. Corey and A. Guzman-
Perez, Angew. Chem., Int. Ed., 1998, 37, 388; (c) D. Carmona,
M. P. Lamata and L. A. Oro, Coord. Chem. Rev., 2000, 200–202,
717; (d) K. A. Jørgensen, Angew. Chem., Int. Ed., 2000, 39, 3558;
(e) J. S. Johnson and D. A. Evans, Acc. Chem. Res., 2000, 33, 325;
(f) H. M. I. Osborn and D. Coisson, Mini–Rev. Org. Chem., 2004,
1, 41.
3 Publications of hDA reactions on or after 2000:
(a) K. B. Simonsen, N. Svenstrup, M. Roberson and
K. A. Jørgensen, Chem.–Eur. J., 2000, 6, 123; (b) D. A. Evans,
J. S. Johnson and E. J. Olhava, J. Am. Chem. Soc., 2000, 122, 1635;
(c) P. I. Dalko, L. Moisan and J. Cossy, Angew. Chem., Int. Ed.,
2002, 41, 625; (d) B. Wang, X.-M. Feng, Y.-Z. Huang, H. Liu,
X. Cui and Y.-Z. Jiang, J. Org. Chem., 2002, 67, 2175; (e) J. Long,
J.-Y. Hu, X. Shen, B. Ji and K.-L. Ding, J. Am. Chem. Soc., 2002,
124, 10; (f) H.-F. Du, J. Long, J.-Y. Hu, X. Li and K.-L. Ding,
Org. Lett., 2002, 4, 4349; (g) Y. Yamashita, S. Saito, H. Ishitani
and S. Kobayashi, Org. Lett., 2002, 4, 1221; (h) D. R. Williams and
R. W. Heidebrecht, J. Am. Chem. Soc., 2003, 125, 1843;
(i) Y. Yamashita, S. Saito, H. Ishitani and S. Kobayashi, J. Am.
Chem. Soc., 2003, 125, 3793; (j) Q. Fan, L. Lin, Y. Huang, X. Feng
and G. Zhang, Org. Lett., 2004, 6, 2185; (k) A. K. Unni,
N. Takenaka, H. Yamamoto and V. H. Rawal, J. Am. Chem.
Soc., 2005, 127, 1336; (l) B. Gao, Z.-Y. Fu, Z.-P. Yu, L. Yu,
Y. Huang and X.-M. Feng, Tetrahedron, 2005, 61, 5822;
(m) W.-Q. Yang, D.-J. Shang, Y.-L. Liu, Y. Du and
X.-M. Feng, J. Org. Chem., 2005, 70, 8533; (n) X. Zhang,
H.-F. Du, Z. Wang, Y.-D. Wu and K.-L. Ding, J. Org. Chem.,
2006, 71, 2862; (o) H. Liu, L.-F. Cun, A.-Q. Mi, Y.-Z. Jiang and
L.-Z. Gong, Org. Lett., 2006, 8, 6023; (p) A. Landa, B. Richter,
R. L. Johansen, A. Minkkila and K. A. Jørgensen, J. Org. Chem.,
2007, 72, 240; (q) Z.-P. Yu, X.-H. Liu, Z.-H. Dong, M.-S. Xie and
X.-M. Feng, Angew. Chem., Int. Ed., 2008, 47, 1308;
(r) X.-B. Yang, J. Feng, J. Zhang, N. Wang, L. Wang, J.-L. Liu
and X.-Q. Yu, Org. Lett., 2008, 10, 1299.
4 M. P. Doyle, I. M. Phillips and W. Hu, J. Am. Chem. Soc., 2001,
123, 5366.
5 M. Valenzuela, M. P. Doyle, C. Hedberg, W. Hu and
A. Holmstrom, Synlett, 2004, 2425.
6 M. P. Doyle, M. Valenzuela and P. Huang, Proc. Natl. Acad. Sci.
U. S. A., 2004, 101, 5391.
7 Aldehyde concentration was increased from 0.25 M to 1.25 M
while keeping the initial diene concentration at 0.25 M. All
reactions reached 100% completion.
8 Y. Wang, J. Wolf, P. Zavalij and M. P. Doyle, Angew. Chem., Int.
Ed., 2008, 47, 1439.
9 A. K. Ghosh, P. Mathivanan, J. Cappiello and K. Krishnan,
Tetrahedron: Asymmetry, 1996, 7, 2165.
10 S. E. Schaus, J. Branalt and E. N. Jacobsen, J. Org. Chem., 1998,
63, 403.
11 D. A. Evans, S. J. Miller, T. Lectka and P. von Matt, J. Am. Chem.
Soc., 1999, 121, 7559.
Scheme 3 Roles played by tetrahydrofuran and acetonitrile in Lewis
acid catalyzed hetero-Diels–Alder reactions.
Fig. 2 Influence of co-solvent (either tetrahydrofuran or acetonitrile)
on Rh2(5S-MEPY)4BF4 catalyzed hetero-Diels–Alder reactions
of p-nitrobenzaldehyde with Danishefsky diene. Reaction conditions:
aldehyde (0.53 mmol), diene (0.63 mmol), catalyst (0.0053 mmol),
solvent (1.00 mL), rt, 24 h.
inhibited by both THF and acetonitrile. As mentioned earlier,
the Evans group had reported that with chiral bis(oxazoline)-
copper(II) complexes11 acetonitrile lowered the % ee by half
the values found for reactions performed in dichloromethane.
The results presented here provide a clear explanation for
the loss of enantiocontrol when Lewis acid catalyzed reactions
are performed in the presence of certain dipolar aprotic
solvents, including nitriles, aldehydes, and ketones. As
anticipated, these solvents cause a decrease in rate because
they compete with the substrate for the catalytically active site.
Furthermore, for those transformations involving activation
of an aldehyde or ketone, the activated substrate may itself
serve as the Lewis acid, causing less than optimum reactivity
and selectivity. The implications of this outcome extend well
beyond hetero-Diels–Alder reactions.
12 M. V. Valenzuela, PhD dissertation, University of Maryland,
College Park, 2004.
13 M. P. Doyle and T. Ren, in Progress in Inorganic Chemistry,
ed. K. Karlin, John Wiley & Sons, Inc., New York, 2001,
vol. 49, pp. 113–168.
We are grateful to the National Institutes of Health
(GM 465030) for their support of this research. We wish to
thank M. Valenzuela for preliminary results that led to this
investigation.
ꢁc
This journal is The Royal Society of Chemistry 2009
5614 | Chem. Commun., 2009, 5612–5614