Organic Letters
Letter
Notes
Scheme 4. Removal of the DG
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Weare indebtedtoDrs. Kewei XuandJoseph Pease atGenentech
for HRMS data acquisition.
■
REFERENCES
■
(1) (a) Ahmad, N. M. Copper-Mediated C−H Activation. In C−H
Bond Activation in Organic Synthesis; Li, J. J., Ed.; CRC: Boca Raton, FL,
2015; pp 175−215. (b) Cai, X.-h.; Xie, B. Synthesis 2015, 47, 737.
(c) Evano, G.; Blanchard, N. Copper-Mediated Cross-Coupling Reactions;
Wiley: Hoboken, NJ, 2013.
Scheme 5. A Possible Mechanism
(2) Patra, T.; Nandi, S.; Sahoo, S. K.; Maiti, D. Chem. Commun. 2016,
52, 1432 and references cited therein.
(3)Chu, L.;Qing, F.-L. J. Am. Chem. Soc. 2012,134, 1298andreferences
cited therein.
(4) C−H halogenation: Li, B.; Liu, B.; Shi, B.-F. Chem. Commun. 2015,
51, 5093 and references cited therein.
(5) C−H oxygenation: Sun, S.-Z.; Shang, M.; Wang, H.-L.; Lin, H.-X.;
Dai, H.-X.; Yu, J.-Q. J. Org. Chem. 2015, 80, 8843 and references cited
therein.
(6) C−H chalcogenation/sulfonylation: Liang, S.; Liu, N.-W.;
Manolikakes, G. Adv. Synth. Catal. 2016, 358, 159 and references cited
therein.
(7) C−H amination: Kim, H.; Chang, S. ACS Catal. 2016, 6, 2341 and
references cited therein.
(8) C−H amidation: (a) Kotipalli, T.; Kavala, V.; Janreddy, D.; Bandi,
V.; Kuo, C.-W.; Yao, C.-F. Eur. J. Org. Chem. 2016, 2016, 1182. (b) Mei,
R.; Loup, J.; Ackermann, L. ACSCatal. 2016, 6, 793. (c) Hermann, G. N.;
Becker, P.; Bolm, C. Angew. Chem., Int. Ed. 2016, 55, 3781 and references
cited therein.
3a to aniline 8 offers an alternative synthesis of anilines. In
comparisontotheconventional sequence ofnitrationfollowedby
reduction to make an aniline at the meta position, this method is a
greener, though longer, alternative at the ortho position. In
comparison to the oxazoline-directed ortho-amination, this
method is of comparable length but greener because the former
requires the use of s-BuLi, or even t-BuLi.
While the mechanism for copper-mediated C−N bond
formation has not been well understood, some mechanistic
insights have been forwarded in the literature.4,18 A plausible
mechanism is postulated for the copper-mediated C−H
amidation employing our bidentate removable DG as shown in
Scheme 5. Therefore, chelation of Cu(OAc)2 with N,N-bidentate
substrate 2a affords Cu(II)-complex 9. With the aid of the base,
complex 9 undergoes C−H cupration to afford Cu(II)-complex
10, which is oxidized by Cu(OAc)2 to produce Cu(III)-complex
11. Ligand exchange with methanesulfonamide then gives rise to
intermediate 12, which subsequently undergoes a reductive
elimination to deliver amide−sulfonamide 4a.
In summary, we discovered inexpensive 2-aminophenyl-1H-
pyrazole as a removable bidentate DG for copper-mediated
aerobic oxidative C(sp2−H) bond amidation and sulfonamida-
tion. While amidation worked for only trifluoroacetamide,
sulfonamidation resulted in excellent yields for all sulfonamides
explored. While the scope of our removable DG is narrower than
those of 2-(4,5-dihydrooxazol-2-yl)aniline and 8-aminoquino-
line, we expanded the repertoire of removable DGs through
rational design. Its utility in other C−H activations will be
explored and extended.
(9) (a) Stammers, T. A.; Coulombe, R.; Rancourt, J.; Thavonekham, B.;
Fazal, G.; Goulet, S.; Jakalian, A.; Wernic, D.; Tsantrizos, Y.; Poupart, M.
A.; Bos, M.; McKercher, G.; Thauvette, L.; Kukolj, G.; Beaulieu, P. L.
̈
Bioorg. Med. Chem. Lett. 2013, 23, 2585. (b) Wydysh, E. A.; Medghalchi,
S. M.; Vadlamudi, A.; Townsend, C. A. J. Med. Chem. 2009, 52, 3317.
(10) (a) Zhang, P.; Huang, W.; Wang, L.; Bao, L.; Jia, Z. J.; et al. Bioorg.
Med. Chem. Lett. 2009, 19, 2179. (b) Marighetti, F.; Steggemann, K.;
Karbaum, M.; Wiese, M. ChemMedChem 2015, 10, 742.
(11) (a) Tran, L. D.; Roane, J.; Daugulis, O. Angew. Chem., Int. Ed. 2013,
52, 6043. (b) A follow-up full paper appeared during preparation of this
manuscript: Roane, J.; Daugulis, O. J. Am. Chem. Soc. 2016, 138, 4601.
(12) Shang, M.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014,
136, 3354.
(13) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.
(14) This transformation proved to be superior to literature procedures
where copper catalysts were ubiquitously used: (a) Maity, T.; Saha, D.;
Koner, S. ChemCatChem 2014, 6, 2373. (b) Yang, Q.; Wang, Y.; Lin, D.;
Zhang, M. Tetrahedron Lett. 2013, 54, 1994. (c) Amal Joseph, P. J.;
Priyadarshini, S.; Lakshmi Kantam, M.; Maheswaran, H. Catal. Sci.
Technol. 2011, 1, 234.
(15)Mukherjee, A.;Subramanyam, U.;Puranik, V. G.;Mohandas, T. P.;
Sarkar, A. Eur. J. Inorg. Chem. 2005, 2005, 1254.
(16) Substrate 2a itself has been prepared by other methods: (a) Liang,
Y.; Liang, Y.-F.; Tang, C.; Yuan, Y.; Jiao, N. Chem. - Eur. J. 2015, 21,
16395. (b) Park, J.; Chang, S. Angew. Chem., Int. Ed. 2015, 54, 14103.
(17) A combination of PPh3/CCl3CONH2 was employed to convert
C−OHbondstoC−Clbonds:Pluempanupat, W.;Chantarasriwong, O.;
Taboonpong, P.; Jang, D. O.; Chavasiri, W. Tetrahedron Lett. 2007, 48,
223.
ASSOCIATED CONTENT
* Supporting Information
■
S
TheSupportingInformationisavailablefreeofchargeontheACS
(18) (a) Liu, J.; Yu, L.; Zhuang, S.; Gui, Q.; Chen, X.; Wang, W.; Tan, Z.
Chem. Commun. 2015, 51, 6418. (b) Sahoo, H.; Reddy, M. K.;
Ramakrishna, I.; Baidya, M. Chem. - Eur. J. 2016, 22, 1592. (c) Zhao,
S.; Yuan, J.; Li, Y.-C.; Shi, B.-F. Chem. Commun. 2015, 51, 12823.
(d) Huffman, L. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 9196.
Experimental procedures and compound characterization
AUTHOR INFORMATION
Corresponding Author
■
D
Org. Lett. XXXX, XXX, XXX−XXX