4
Tetrahedron Letters
for the preparation of hydrocarbon-bridged diaminodiacid.
Shigenaga, A.; Otaka, A. Tetrahedron 2015, 71, 4183. c) Zhou, P.; Liu,
Y.; Zhou, L.; Zhu, K.; Feng, K.; Zhang, H.; Wang, Y. J. Med. Chem.
2016, 59, 10329. d) Mifune, Y.; Nakamura, H.; Fuse, S. Org. Biomol.
Chem. 2016, 14, 11244
Taking advantage of nickel-catalyzed reductive cross-coupling
reaction, the hydrocarbon bridge could be synthesized smoothly
with a 48% yield on gram scale, which presents advantages on
the synthetic efficiency and operation simplicity over previous
electrolysis method. By using our recently developed
Dmab/ivDde protecting group system, we obtained a new
hydrocarbon-bridged diaminodiacid with metal-free deprotection
conditions. Subsequently, we also demonstrated that the oxytocin
disulfide bond mimic 11 containing a hydrocarbon bridge can be
obtained in good efficiency via the diaminodiacid-based strategy.
We envisage that the Dmab/ivDde-protected hydrocarbon-
bridged diaminodiacid would serve as a valuable complement to
the growing arsenal of diamonodiacids, which provide a flexible
approach for generating peptide disulfide bond mimics with
structural diversity.
7.
a) Blastik, Z. E.; Voltrova, S.; Matousek, V.; Jurasek, B.; Manley, D.
W.; Klepetarova, B.; Beier, P. Angew. Chem. 2017, 129, 352. b)
Brittain, W. D.; Buckley, B. R.; Fossey, J. S. Chem. Commun. 2015, 51,
17217. c) Glassford, I.; Teijaro, C. N.; Daher, S. S.; Weil, A.; Small, M.
C.; Redhu, S. K.; Nicholson, A. W. J. Am. Chem. Soc. 2016, 138, 3136.
d) Jin, L.; Romero, E. A.; Melaimi, M.; Bertrand, G. J. Am. Chem. Soc.
2015, 137, 15696. e) Roice, M.; Johannsen, I.; Meldal, M. QSAR.
Comb. Sci. 2004, 23, 662. f) Holland-Nell, K.; Meldal, M. Angew.
Chem. Int. Ed. 2011, 50, 5204. g) Empting, M.; Avrutina, O.;
Meusinger, R.; Fabritz, S.; Reinwarth, M.; Biesalski, M.; Voigt, S.;
Buntkowsky, G.; Kolmar, H. Angew. Chem. Int. Ed. 2011, 50, 5207.
a) Cui, H. K.; Guo, Y.; He, Y.; Wang, F. L.; Chang, H. N.; Wang, Y. J.;
Wu, F. M.; Tian, C. L.; Liu, L. Angew. Chem. Int. Ed. 2013, 52, 9558.
b) Guo, Y.; Sun, D. M.; Wang, F. L.; He, Y.; Liu, L.; Tian, C. L.
Angew. Chem. Int. Ed. 2015, 54, 14276. c) Wang, F. L.; Guo, Y.; Li, S.
J.; Guo, Q. X.; Shi, J.; Li, Y. M. Org. Biomol. Chem. 2015; 13, 6286. d)
Xu, Y.; Wang, T.; Guan, C. J.; Li, Y. M.; Liu, L.; Shi, J.; Bierer, D.
Tetrahedron. Lett. 2017, 58, 1677.
8.
9.
Hiebl, J.; Blanka, M.; Guttman, A.; Kollmann, H.; Leitner, K.;
Mayrhofer, G.; Winkler, K. Tetrahedron. 1998, 54, 2059.
Acknowledgements
10. a) Xu, H.; Zhao, C.; Qian, Q.; Deng, W.; Gong, H. G. Chem. Sci. 2013,
4, 4022. b) Lu, X.; Yi, J.; Zhang, Z. Q.; Dai, J. J.; Liu, J. H.; Xiao, B.;
Fu, Y; Liu, L. Chem. Eur. J. 2014, 20, 15339. c) Lu, X.; Xiao, B.; Liu,
L.; Fu, Y. Chem. Eur. J. 2016, 22, 11161. d) Lu, X.; Xiao, B.; Zhang, Z.;
Gong, T.; Su, W.; Yi, J.; Fu, Y; Liu, L. Nat. Commun. 2016, 7, 11129.
11. Ciapetti, P.; Mann, A.; Shoenfelder, A.; Taddei, M. Tetrahedron. Lett.
1998, 39, 3843.
This work was supported by the National Natural Science
Foundation of China (No. 21372058, 21572043, 21572214) and
the Fundamental Research Funds for the Central Universities for
financial support. We also thank Prof. Lei Liu of Tsinghua
University for assistance.
12. Chang, C. D.; Coward, J. K. J. Med. Chem. 1976, 19, 684.
13. Yu, X.; Yang, T.; Wang, S.; Xu, H.; Gong, H. G. Org. Lett. 2011, 13,
2138.
References
14. Gimpl, G.; Fahrenholz, F. Physiol. Rev. 2001, 81, 629.
15. a) de Araujo, A. D.; Mobli, M.; King, G. F.; Alewood, P. F. Angew.
Chem. Int. Ed. 2012, 51, 10298; b) Muttenthaler, M.; Andersson, A.; de
Araujo, A. D.; Dekan, Z.; Lewis, R. J.; Alewood, P. F. J. Med. Chem.
2010, 53, 8585.
1.
a) Colgrave, M. L.; Craik, D. J. Biochemistry 2004, 43, 5965. b) Lewis,
R. J.; Garcia, M. L. Nat. Rev. Drug. Discov. 2003, 2, 790. c) Williams,
G. M.; Lee, K.; Li, X.; Copper, G. J. S.; Brimble, M. A. Org. Biomol.
Chem. 2015, 13, 4059. d) Scully, C. C. G.; White, C. J.; Yudin, A. K.
Org. Biomol. Chem. 2016, 14, 10230. e) Frost, J. R.; Wu, Z. J.; Lam, Y.
C.; Owens, A. E.; Fasan, R. Org. Biomol. Chem. 2016, 14, 5803
a) Moore, S. J.; Leung, C. L.; Cochran, J. R. Drug Discov. Today 2012,
9, e3. b) Hsieh, Y. S.; Wijeyewickrema, L. C.; Wilkinson, B. L.; Pike,
R. N.; Payne, R. J. Angew. Chem. Int. Ed. 2014, 53, 3947. c) Arai, K.;
Takei, T.; Okumura, M.; Watanabe, S.; Amagai, Y.; Asahina, Y.;
Iwaoka, M. Angew. Chem. Int. Ed. 2017, 56, 5522. d) Luhmann, T.;
Mong, S. K.; Simon, M. D.; Meinel, L.; Pentelute, B. L. Org. Biomol.
Chem. 2016, 14, 3345. e) Hattori, K.; Koike, K.; Okuda, K.; Hirayama,
T.; Ebihara, M.; Takenaka, M.; Nagasawa, H. Org. Biomol. Chem.
2016, 14, 2090. f) Hojo, K.; Hossain, M. A.; Tailhades, J.; Shabanpoor,
F.; Wong, L. L.; Ong-Palsson, E. E.; Ma, S.; Gundlach, A. D.;
Rosengren, K. J.; Wade, J. D; Bathgate, R. A. D. J. Med. Chem. 2016,
59, 7445. g) Zheng, Y.; Zhai, L.; Zhao, Y.; Wu, C. L. J. Am. Chem. Soc.
2015, 137, 15094.
16. a) Gao, S.; Becker, B.; Luo, L.; Geng, Y.; Zhao, W.; Yin, Y.; Yao, D.
Proc. Natl. Acad. Sci. USA 2016, 113, 7650. b) Dal Monte, O.; Piva,
M.; Anderson, K. M.; Tringides, M.; Holmes, A. J.; Chang, S. W. Proc.
Natl. Acad. Sci. USA 2017, 114, 5247.
2.
17. a) Pan, M.; Gao, S.; Zheng, Y.; Tan, X.; Lan, H.; Tan, X.; Sun, D.; Lu,
L.; Wang, T.; Zheng, Q.; Huang, Y.; Wang, J.; Liu, L. J. Am. Chem.
Soc. 2016, 138, 7429. b) Tang, S.; Si, Y.-Y.; Wang, Z.-P.; Mei, K.-R.;
Chen, X.; Cheng, J.-Y.; Zheng, J.-S.; Liu, L. Angew. Chem. Int. Ed.
2015, 54, 5713. c) Fang, G.-M.; Wang, J.-X.; Liu, L. Angew. Chem. Int.
Ed. 2012, 51, 10347. d) Tang, S.; Wan, Z. P.; Gao, Y. R.; Zheng, J. S.;
Wang, J.; Si, Y. Y.; Chen, X.; Qi, H.; Liu, L.; Liu, W. L. Chem. Sci.,
2016, 7, 1891.
18. Albericio, F.; Cases, M.; Alsina, J.; Triolo, S. A.; Carpino, L. A.; Kates,
S. A. Tetrahedron. Lett. 1997, 38, 4853.
3.
4.
a) Daly, N. L.; Rosengren, K. J.; Craik, D. J. Adv. Drug. Deliv. Rev.
2009, 61, 918. b) Kolmar, H. Curr. Opin. Pharmacol. 2009, 9, 608.
a) Gehrmann, J.; Alewood, P. F.; Craik, D. J. J. Mol. Biol. 1998,
278,401. b) Rabenstein, D. L.; Weaver, K. H. J. Org. Chem. 1996, 61,
7391. c) Laboissiere, M. C. A.; Sturley, S. L.; Raines, R. T. J. Biol.
Chem. 1995, 270, 28006.
5.
a) Dekan, Z.; Vetter, I.; Daly, N. L.; Craik, D. J.; Lewis, R. J.; Alewood,
P. F. J. Am. Chem. Soc. 2011, 133, 15866. b) Rew, Y.; Malkmus, S.;
Svensson, C.; Yaksh, T. L.; Chung, N. N.; Schiller, P. W.; Cassel, J. A.;
DeHaven, R. N.; Goodman, M. J. Med. Chem. 2002, 45, 3746. c) Knerr,
P. J.; Tzekou, A.; Ricklin, D.; Qu, H.; Chen, H., van der Donk, W. A.;
Lambris, J. D. ACS Chem. Biol. 2011, 6, 753. d) Tian, Y.; Li, J. X.;
Zhao, H.; Zeng, X. Z.; Wang, D. Y.; Liu, Q. S.; Niu, X. G.; Huang, X.
H.; Xu, N. H.; Li, Z. G. Chem. Sci. 2016, 7, 3325. e) Hu, K.; Geng, H.;
Zhang, Q.; Liu, Q.; Xie, M.; Sun, C.; Wu, Y. D.; Li, Z. G. Angew.
Chem. Int. Ed. 2016, 55, 8013. f) Lin, H.; Jiang, Y.; Zhang, Q.; Hu, K.;
Li, Z. G. Chem. Commun. 2016, 52, 10389. g) Jiang, Y.; Hu, K.; Shi,
X.; Tang, Q.; Wang, Z.; Ye, X.; Li, Z. G. Org. Biomol. Chem. 2017, 15,
541. h) Karas, J. A.; Patil, N. A.; Tailhades, J.; Sani, M. A.; Scanlon, D.
B.; Forbes, B. E.; Gardiner, J.; Separovic, F.; Wade, J. D.; Hossain, M.
A. Angew. Chem. Int. Ed. 2016 55, 14743. i) Liu, W.; Zheng, Y.; Kong,
X.; Heinis, C.; Zhao, Y.; Wu, C. L. Angew. Chem. Int. Ed. 2017, 56,
4458.
6.
a) Mao, J.; Kuranaga, T.; Hamamoto, H.; Sekimizu, K.; Inoue, M.
ChemMedChem 2015, 10, 540. b) Aihara, K.; Inokuma, T.; Komiya, C.;