Journal of the American Chemical Society
Article
(10) Franks, A.; Tronrud, C.; Kiakos, K.; Kluza, J.; Munde, M.;
Brown, T.; Mackay, H.; Wilson, W. D.; Hochhauser, D.; Hartley, J. A.;
Lee, M. Bioorg. Med. Chem. 2010, 18, 5553.
(11) Wilson, W. D.; Tanious, F. A.; Mathis, A.; Tevis, D.; Hall, J. E.;
Boykin, D. W. Biochimie 2008, 90, 999.
(12) Brucoli, F.; Hawkins, R. M.; James, C. H.; Wells, G.; Jenkins, T.
C.; Ellis, T.; Hartley, J. A.; Howard, P. W.; Thurston, D. E. Bioorg.
Med. Chem. Lett. 2011, 21, 3780.
(13) Ryan, B.; Melander, C.; Puckett, J. W.; Son, L. S.; Wells, R. D.;
Dervan, P. B.; Gottesfeld, J.M.. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
11497.
(14) Hebert, M. D. Biochimie 2008, 90, 1131.
(15) Balasubramanian, S.; Hurley, L. H.; Neidle, S. Nat. Rev. Drug
Discovery 2011, 10, 261.
(16) Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley, L. H. Proc.
Natl. Acad. Sci. U.S.A. 2002, 99, 11593.
In summary, linked two-site binding compounds such as
those in Figure 1 can have three major, different types of
complexes with A-tract sequences in DNA. There are two
particularly unexpected features of the results. First is the switch
from monomer binding by the compounds with two ABP
motifs, when there is a single GC between AATT target sites, to
dimer binding with a two GC spacer in the DNA sequence.
Clearly, the widening of the groove with the two GCs allows
the compound to improve the total free energy of binding by
inserting two stacked molecules into the binding site. Second,
the AATT site has typically maintained a narrow, A-tract type
minor groove, and a cooperative minor groove dimer has not
previously been observed for this sequence. This suggests that
the wider central GC sequence may allow compound module
stacking while maintaining a relatively narrow minor groove
with only single compound modules inserted, as in Model 3 in
Figure 5C. The compounds in this research have provided
exciting new information on recognition of adjacent AT
binding sites as well as numerous suggestions for design of
second generation agents that have improved affinity and
selectivity.
(17) Collie, G. W.; Sparapani, S.; Parkinson, G. N.; Neidle, S. J. Am.
Chem. Soc. 2011, 133, 2721.
(18) Koirala, D.; Dhakal, Soma; Ashbridae, B.; Sannohe, Yuta;
Rodriguez, R.; Sugiyama, H.; Balasurbramanian, S. Nat. Chem. 2011, 3,
782.
(19) De Cian, A.; Lacroix, L.; Douarre, C.; Temime-Smaali, N.;
Trentesaux, C.; Riou, J. F.; Mergny, J. L. Biochimie 2008, 90, 131.
(20) Dervan, P. B. Science 1986, 232, 464.
(21) Roy Chowdhury, A.; Bakshi, R.; Wang, J.; Yildirir, G.; Liu, B. Y.;
Pappas-Brown, V.; Tolun, G.; Griffith, J. D.; Shapiro, T. A.; Jensen, R.
E.; Englund, P. T. PLoS Pathog. 2010, 6, e1001226.
(22) Motta, M. C. Curr. Pharm. Des. 2008, 14, 847.
ASSOCIATED CONTENT
■
S
* Supporting Information
Synthesis and characterization of symmetric compounds;
figures for comparison of thermal melting; SPR experiments
for A5T5 and AATTGCAGTC binding; the effect of GC length
change on RT546 binding; ESI−MS spectra; comparison of
CD spectra; effect of compound linker length on the DNA
recognition pattern. This material is available free of charge via
(23) Gonzal
699.
(24) Lukes,
Englund, R. T. Eukaryotic Cell 2002, 1, 495−502.
́
ez, M.; Cerecetto, H. Expert Opin. Ther. Pat. 2011, 21,
̌
́
́
J.; Guilbride, D. L.; Votypka, J.; Zíkova, A.; Benne, R.;
(25) Paine, M. F.; Wang, M. Z.; Generaux, C. N.; Boykin, D. W.;
Wilson, W. D.; De Koning, H. P.; Olson, C. A.; Pohlig, G.; Burri, C.;
Brun, R.; Murilla, G. A.; Thuita, J. K.; Barrett, M. P.; Tidwell, R. R.
Curr. Opin. Invest. Drugs 2010, 11, 876.
(26) Le Loup, G.; Pialoux, G.; Lescure, F. X. Curr. Opin. Infect. Dis.
2011, 24, 428.
(27) Brun, R.; Don, R.; Jacobs, R. T.; Wang, M. Z.; Barrett, M. P.
Future Microbiol. 2011, 6, 677.
(28) Corson, T. W.; Aberle, N.; Crews, C. M. ACS Chem. Biol. 2008,
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
§On leave from Institute of Medicinal Biotechnology, Chinese
Academy of Medical Sciences and Peking Union Medical
College, Beijing 100050, China
3, 677.
(29) Bourdouxhe-Housiaux, C.; Colson, P.; Houssier, C.; Waring, M.
J.; Bailly, C. Biochemistry 1996, 35, 4251.
(30) David-Cordonnier, M. H.; Hildebrand, M. P.; Baldeyrou, B.;
Lansiaux, A.; Keuser, C.; Benzschawel, K.; Lemster, T.; Pindur, U. Eur.
J. Med. Chem. 2007, 42, 752.
(31) Zhang, R.; Wu, X.; Guziec, L. J.; Guziec, F. S.; Chee, G. L.;
Yalowich, J. C.; Hasinoff, B. B. Bioorg. Med. Chem. 2010, 18, 3974.
(32) Wakelin, L. P. G. Med. Res. Rev. 1986, 6, 275.
(33) Holman, G. G.; Zewail-Foote, M.; Smith, A. R.; Johnson, K. A.;
Iverson, B. L. Nat. Chem. 2011, 3, 875.
(34) Zolova, O. E.; Mady, A. S. A.; Garneau-Tsodikova, S.
Biopolymers 2010, 93, 777.
(35) Fox, K. R.; Gauvreau, D.; Goodwin, D. C.; Waring, M. J.
Biochem. J. 1980, 191, 729.
(36) Rahman, K. M.; James, C. H.; Thurston, D. E. Nucleic Acids Res.
ACKNOWLEDGMENTS
■
This research was supported by National Institutes of Health
grant AI064200. Biacore instruments were purchased with
partial support from the Georgia Research Alliance.
REFERENCES
■
(1) Mohammed, H. S.; Delos Santos, J. O.; Armitage, B. A. Artif.
DNA PNA XNA 2011, 2, 43.
(2) Hu, J.; Corey, D. R. Biochemistry 2007, 46, 7581.
(3) Højfeldt, J. W.; Van Dyke, A. R.; Mapp, A. K. Chem. Soc. Rev.
2011, 40, 4286.
2011, 39, 5800.
(37) Kers, I.; Dervan, P. B. Bioorg. Med. Chem. 2002, 10, 3339.
(38) Czarny, A.; Wilson, W. D.; Boykin, D. W. J. Heterocycl. Chem.
1996, 33, 1393.
(4) Tietjen, J. R.; Donato, L. J.; Bhimisaria, D.; Ansari, A. Z. Methods
Enzymol. 2011, 497, 3.
(5) Chenoweth, D. M.; Dervan, P. B. J. Am. Chem. Soc. 2010, 132,
14521.
(39) Tidwell, R. R.; Geratz, J. D.; Dann, O.; Volz, G.; Zeh, D.; Loewe,
H. J. Med. Chem. 1978, 21, 613−623.
(6) He, Y.; Hoskins, J. M.; McLeod, H. L. Trends Mol. Med. 2011, 17,
244.
(7) Kissinger, J. C. Trends Parasitol. 2006, 22, 240.
(8) Mu, J.; Seydel, K. B.; Bates, A.; Su, X. Z. Curr. Genomics 2010, 11,
279.
(40) Liu, Y.; Wilson, W. D. Methods Mol. Biol. 2010, 613, 1.
(41) Nguyen, B.; Tanious, F. A.; Wilson, W. D. Methods 2007, 42,
150.
(42) Van Holde, K. E.; Johnson, W. C.; Ho, P. S. In Principles of
Physical Biochemistry; Pearson Prentice Hall: Upper Saddle River, NJ,
2006.
(9) Purfield, A. E.; Tidwell, R. R.; Meshnick, S. R. Malar. J. 2009, 8,
104.
5298
dx.doi.org/10.1021/ja211628j | J. Am. Chem. Soc. 2012, 134, 5290−5299