Page 3 of 3
Journal Name
ChemComm
DOI: 10.1039/C5CC01713K
In addition, the ICDs intensities increase gradually with side-chain steric/electrostatic repulsive and interchain attractive
increasing the concentrations of ATP (Fig. S7, ESI).
interactions of PTs. This strategy is expected to be applied to
other conjugated polyelectrolyte (CPE)-based sensing system.
This work was sponsored by NSFC (51373122 and
21074093) and NCET-12-1066.
Notes and references
a
School of Materials Science & Engineering, Tianjin University of
b
Key Laboratory of Functional Polymer Materials, Institute of Polymer
Chemistry, College of Chemistry, Nankai University, Tianjin, 300071,
China.
Electronic Supplementary Information (ESI) available: Experimental
details and characterization data. See DOI: 10.1039/c000000x/
1
(a) D. N. Browser and J. B. S. Khakh, J. Neurosci., 2004, 24, 8606;
(b) R. D. Fields and B. Stevens, Trends Neurosci., 2000, 23, 625.
J. R. Knowles, Annu. Rev. Biochem., 1980, 49, 877.
F. M. Ashcroft and F. M. Gribble, Diabetologia, 1999, 42, 903.
P. B. Dennis, A. Jaeschke, M. Saitoh, B. Fowler, S. C. Kozma and G.
Thomas, Science, 2001, 294, 1102.
Fig. 4 Fluorescent titration spectra of CPT (100
with different concentrations of ATP. [ATP] = 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 30,
40, 50, 70, 90 M from top to down. ex = 450 nm.
ꢀM) in tris-HCl buffer solution
2
3
4
ꢀ
λ
Fluorescent titration of CPT (100 ꢀM) with ATP in tris-HCl
5
6
J. Berg, Y. P. Hung and G. Yellen, Nat. Methods, 2009, 6, 161.
buffer solution led to a dramatic quenching of the emission of
CPT at 570 nm (λex = 450 nm), signifying the possibility for
constructing colorimetric and fluorescent dual mode
chemosensor for the detection of ATP. As shown in Fig. 4, free
CPT chains in tris-HCl buffer solution with random-coiled
conformation exhibits an emission band around 570 nm upon
(a) Y. Zhou, Z. C. Xu and J. Yoon, Chem. Soc. Rev., 2011, 40, 2222;
(b) Y. Kurishita, T. Kohira, A. Ojida, and I. Hamachi, J. Am. Chem.
Soc., 2010, 132, 13290; (c) Z. C. Xu, N. J. Singh, J. Lim, J. Pan, H.
N. Kim, S. Park, K. S. Kim and J. Yoon, J. Am. Chem. Soc., 2009,
131, 15528; (d) M. Zhao, M. Wang, H. J. Liu, D. S. Liu, G. X.
Zhang, D. Q. Zhang and D. B. Zhu, Langmuir, 2009, 25, 676; (e) P.
P. Neelakandan, M. Hariharan and D. Ramaiah, Org. Lett., 2005, 7,
5765; (f) A. S. Rao, D. Kim, H. Nam, H. Jo, K. H. Kim, C. Ban and
K. H. Ahn, Chem. Commun., 2012, 48, 3206; (g) Y. L. Tang, F. D.
Feng, M. H. Yu, L. L. An, F. He, S. Wang, Y. L. Li, D. B. Zhu and
G. C. Bazan, Adv. Mater., 2008, 20, 703; (h) X. Y. Li, X. D. Guo, L.
X. Cao, Z. Q. Xun, S. Q. Wang, S. Y. Li, Y. Li and G. Q. Yang,
Angew. Chem. Int. Ed., 2014, 53, 7809; (i) C. Li, M. Numata, M.
Takeuchi and S. Shinkai, Angew. Chem. Int. Ed., 2005, 44, 6371; (j)
excitation at 450 nm (
Φ = 0.304). Upon addition of increasing
amounts of ATP, the emission intensity decreases gradually
with a obvious red-shift and broadening of the band is
observed, which indicates the fluorometric detection of ATP
binding is possible. The relative weak emission observed from
aggregates as compared to that of free chains is a result of a
more efficient radiationless decay in the ordered phase. The
fluorescence quenching of CPT is very sensitive to binding
with ATP, and a near 100 % quenching at the emission
maximum was observed in the presence of an equimolar
amount of ATP, whereas only 28 % and 15% quenching of the
fluorescence was detected upon addition of an equimolar
amount of ADP and AMP, respectively (Fig. S8, ESI). These
results indicate that the quenching of fluorescence is much
more effective in the presence of ATP than with the use of
other nucleotides such as ADP, AMP, UTP and UMP.
Fluorescence quenching efficiencies can be quantified by the
use of the Stern–Volmer equation (Fig. S12, ESI). The Stern–
Volmer constant, KSV, determined from the linear portion of a
plot of F0/Fi versus [ATP] is of 4.46
The detection limit, based on fluorescence quenching, for ATP
was estimated to be 2.3
10-9 M.21
In conclusion, we have developed a sensitive colorimetric
and fluorescent dual-response probe for the detection of ATP at
physiological pH conditions based on a strategy of self-
promoting aggregation of a PT derivative. Although further
research is still required to understand the sensing mechanism
J. Liang, K. Li and B. Liu, Chem. Sci., 2013,
4, 1377; (k) C. Li and G.
Q. Shi, ACS Appl. Mater. Interface, 2013, , 4503.
5
7
(a) Z. Y. Yao, X. L. Feng, W. J. Hong, C. Li and G. Q. Shi, Chem.
Commun., 2009, 4696-4698; (b) Z. C. Xu, D. R. Spring and J. Yoon,
Chem. Asian J., 2011, 6, 2114.
8
9
S. Garreau, M. Leclerc, N. Errien and G. Louarn, Macromolecules
,
2003, 36, 692.
I. Levesque and M. Leclerc, Chem. Mater., 1996, 8, 2843.
10 S. Xie, A. Natansohn and P. Rochon, Chem. Mater., 1993, 5, 403.
11 F. Brustolin, F. Goldoni, E. W. Meijer and N. Sommerdijk,
Macromolecules, 2002, 35, 1054.
12 (a) M. Leclerc and K. Faid, Adv. Mater., 1997,
9, 1087; (b) C. Li, M.
Numata, M. Takeuchi and S. Shinkai, Chem. Asian J., 2006,
1, 95;
(c) H.-A. Ho, M. Boissinot, M. G. Bergeron, G. Corbeil, K. Dore, D.
Boudreau and M. Leclerc, Angew. Chem. Int. Ed., 2002, 41, 1548;
(d) H.-A. Ho and M. Leclerc, J. Am. Chem. Soc., 2003, 125, 4412;
(e) H.-A. Ho and M. Leclerc, J. Am. Chem. Soc., 2004, 126, 1384.
13 (a) H.-A. Ho, A. Najari and M. Leclerc, Acc. Chem. Res., 2008, 41
168; (b) H.-A. Ho, M. Bera-Aberem and M. Leclerc, Chem. Eur. J.
,
,
×
105 M-1 (R = 0.994).
2005, 11, 1718; (c) F. Le Floch, H.-A. Ho and M. Leclerc, Anal.
Chem., 2006, 78, 4727.
14 (a) C. Li, M. Numata, A.-H. Bae, K. Sakurai and S. Shinkai, J. Am.
Chem. Soc., 2005, 127, 4548. (b) C. Li, M. Numata, T. Hasegawa, K.
Sakurai and S. Shinkai, Chem. Lett., 2005, 34, 1354.
15 Z. Yao, C. Li and G. Shi, Langmuir, 2008, 24, 12829.
16 Z. Yao, X. Feng, C. Li and G. Shi, Chem. Commun., 2009, 45, 5886.
17 Z. Yao, H. Bai, C. Li and G. Shi, Chem. Commun., 2010, 46, 5094.
18 Z. Yao, H. Bai, C. Li and G. Shi, Chem. Commun., 2011, 47, 7431.
×
behind the better selectivity for ATP, these results have 19 A. Naya, Y. Sagara, K. Ohwaki, T. Saeki, D. Ichikawa, Y. Iwasawa,
K. Noguchi and N. Ohtake, J. Med. Chem., 2001, 44, 1429.
20 (a) H. Benesi and J. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703;
indicated that a tiny and subtle adjustment of the structure of
PTs can efficiently improve the sensitivity of PT-based probe
toward a special analyte by controlling the interplay between
(b) K. T. Arun and D. Ramaiah, J. Phys. Chem. A, 2005, 109, 5571.
21 Y. Che, X. M. Yang and L. Zang, Chem. Commun., 2008, 1413.
J. Name., 2012, 00, 1-3 | 3
This journal is © The Royal Society of Chemistry 2012