Organic Letters
Letter
Because of the known reactivity of dialkyl chlorophosphates
with carbohydrates’ primary alcohols,23 we did not attempt this
reaction with unprotected sugars.
To demonstrate that this procedure can be applied to the
synthesis of biologically relevant β-phosphates, we prepared
deprotected glycosides 30 and 31 (Scheme 2), two potentially
ACKNOWLEDGMENTS
The authors are grateful to China Scholarship Council (Ph.D.
grant No. 2010667003 to T.L.) and to FNRS (Charge
Recherche for A.T.).
■
́
de
REFERENCES
■
(1) Wagner, G. K.; Pesnot, T.; Field, R. A. Nat. Prod. Rep. 2009, 26,
1172−1194.
Scheme 2. Synthesis of Azido Analogues 30 and 31
(2) Nikolaev, A. V.; Botvinko, I. V.; Ross, A. J. Carbohydr. Res. 2007,
342, 297−344.
(3) Wang, W.; Hu, T.; Frantom, P. A.; Zheng, T.; Gerwe, B.; Del, A. D.
S.; Garret, S.; Seidel, R. D., 3rd; Wu, P. Proc. Natl. Acad. Sci. U.S.A. 2009,
106, 16096−16101.
(4) Plante, O. J.; Palmacci, E. R.; Andrade, R. B.; Seeberger, P. H. J. Am.
Chem. Soc. 2001, 123, 9545−9554.
́ ́
(5) Dohi, H.; Perion, R.; Durka, M.; Bosco, M.; Roue, Y.; Moreau, F.;
Grizot, S.; Ducruix, A.; Escaich, S.; Vincent, S. P. Chem.Eur. J. 2008,
14, 9530−9539.
(6) Guy, M. R.; Illarionov, P. A.; Gurcha, S. S.; Dover, L. G.; Gibson, K.
J. C.; Smith, P. W.; Minnikin, D. E.; Besra, G. S. Biochem. J. 2004, 382,
905−912.
(7) Grizot, S.; Salem, M.; Vongsouthi, V.; Durand, L.; Moreau, F.;
Dohi, H.; Vincent, S.; Escaich, S.; Ducruix, A. J. Mol. Biol. 2006, 363,
383−394.
(8) Sletten, E. M.; Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 666−676.
(9) (a) Arlt, M.; Hindsgaul, O. J. Org. Chem. 1995, 60, 14−15.
(b) Zhang, Q.; Liu, H.-W. J. Am. Chem. Soc. 2000, 122, 9065−9070.
(10) (a) Veeneman, G. H.; Broxterman, H. J. G.; van der Marel, G. A.;
van Boom, J. H. Tetrahedron Lett. 1991, 32, 6175−6178. (b) Crich, D.;
Dudkin, V. Org. Lett. 2000, 2, 3941−3943.
clickable analogues of β-mannosyl phosphoisoprenoids I and
ADP-heptose II (Figure 1). The deallylation of compound 2 was
carried out efficiently in the presence of PdCl2 in DCM/MeOH
at rt, and 29 was isolated in 88% yield (Scheme 2).24 The
coupling between 29 and adenosine 5′-phosphorimidazolide25 in
DMF in the presence of MgCl2 as a Lewis acid catalyst afforded
the desired protected nucleotide azido sugar, which was
deacetylated to lead to 30 in 95% yield. In order to prepare the
analogue of β-mannosyl phosphoisoprenoids I, the reaction
between Nerol and phosphate 29 in the presence of
trichloroacetonitrile in pyridine26 at 65 °C, followed by
deprotection, gave phospholipid 31 in 76% yield over two steps.
In conclusion, we have developed a simple regioselective 1-β-
phosphorylation of acetylated or benzoylated glycopyranosides
that bear an azido or an alkynyl group, using diallyl
chlorophosphate as phosphorylating agent. The scope and
limitations of this reaction have been described and allow various
pyranosides (D-mannose, L-glycero-D-manno-heptopyranose, D-
galactose, D-glycose, L-fucose, and lactose) to afford the
corresponding 1-β-phosphates in moderate-to-good yields and
very high β-selectivity. The interest of this transformation has
been highlighted by the synthesis of a nucleotide sugar and a β-
mannosyl phosphoisoprenoid. Furthermore, the findings
described herein represent a significant advance in selective β-
phosphorylation and will create new opportunities for the design
of other complex glycolipids or nucleotide sugars.
(11) Schmidt, R. R.; Wegmann, B.; Jung, K. H. Liebigs Ann. Chem.
1991, 121−124.
(12) (a) Sabesan, S.; Neira, S. Carbohydr. Res. 1992, 223, 169−185.
(b) van Summeren, R. P.; Moody, D. B.; Feringa, B. L.; Minnaard, A. J. J.
Am. Chem. Soc. 2006, 128, 4546−4547. (c) Kondo, H.; Ichikawa, Y.;
Wong, C. H. J. Am. Chem. Soc. 1992, 114, 8748−8750.
(13) Crich, D.; Sun, S. J. Am. Chem. Soc. 1997, 119, 11217−11223.
(14) Marchesan, S.; Macmillan, D. Chem. Commun. 2008, 4321−4323.
(15) Snitynsky, R. B.; Lowary, T. L. Org. Lett. 2014, 16, 212−215.
(16) Majumdar, D.; Elsayed, G. A.; Buskas, T.; Boons, G. J. J. Org.
Chem. 2005, 70, 1691−1697.
(17) Hung, S.-C.; Wong, C.-H. Tetrahedron Lett. 1996, 37, 4903−
4906.
(18) Danac, R.; Ball, L.; Gurr, S. J.; Fairbanks, A. J. Carbohydr. Res.
2008, 343, 1012−1022.
(19) Maruszewska-Wieczorkowska, E.; Michalski, J.; Zwierzak, A.
Chem. Ind. 1961, 1668.
(20) Acharya, J.; Gupta, A. K.; Shakya, P. D.; Kaushik, M. P.
Tetrahedron Lett. 2005, 46, 5293−5295.
(21) Steinberg, G. M. J. Org. Chem. 1950, 15, 637−647.
(22) The β-cofiguration of mannoside can also be demonstrated by
measuring the 1H−13C 1J coupling constant; see Brand, C.; Ketterholt,
K.; Werz, D. B. Org. Lett. 2012, 14, 5126−5129.
́
(23) Durka, M.; Tikad, A.; Perion, R.; Bosco, M.; Andaloussi, M.;
Floquet, S.; Malacain, E.; Moreau, F.; Oxoby, M.; Gerusz, V.; Vincent, S.
P. Chem.Eur. J. 2011, 17, 11305−11313.
ASSOCIATED CONTENT
■
(24) Gola, G.; Libenson, P.; Gandolfi-Donadio, L.; Gallo-Rodriguez,
C. Arkivoc 2005, 234−242.
S
* Supporting Information
(25) Dabrowski-Tumanski, P.; Kowalska, J.; Jemielity, J. Eur. J. Org.
Chem. 2013, 2147−2154.
Experimental procedures and NMR spectra. This material is
(26) Zhang, J.; Angala, S. K.; Pramanik, P. K.; Li, K.; Crick, D. C.; Liav,
A.; Jozwiak, A.; Swiezewska, E.; Jackson, M.; Chatterjee, D. ACS Chem.
Biol. 2011, 6, 819−828.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
5631
dx.doi.org/10.1021/ol5026876 | Org. Lett. 2014, 16, 5628−5631