7902
A. K. L. Yuen, C. A. Hutton / Tetrahedron Letters 46 (2005) 7899–7903
Table 2. Conversion of pinacolyl esters to boronic acids via the corresponding trifluoroborates
method A;
LiOHaq, CH3CN
O
B
B(OH)2
BF3K
KHF2 (4.5 M)
MeOH, r.t.
O
R
R
R
OR method B;
3
1
2
TMS-Cl, H2O
Entry
R
H
2-Me
4-Me
2-OH
2-OMe
4-OMe
2-OTs
2-CHO
2-Cl
Yield of 2 (%)24
Yield of 3 (%) (% 2 remaining in brackets)
Method A25
Method B26
1
2
3
4
5
6
7
8
73
97
77
87
97
95
63
95
95
80
67
94
Quant.
71 (18)
85 (10)
0 (decomp.)
49 (12)
95 (2)
—
Quant.
—
90
70
—
Quant.
Quant.a
21a(75)
Quant.
—
Quant.
Quant.
Quant.
—
9
10
11
12
4-F
4-Br, 3-NHCbz
4-Br, 3-CO2Me
93
—
Quant.
a 3.5 equiv of LiOH used.
H2O
5. Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc. 1997,
119, 445–446.
6. Petasis, N. A.; Yudin, A. K.; Zavialov, I. A.; Prakash, G.
K. S.; Olah, G. A. Synlett 1997, 606–608.
7. Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem.
1995, 60, 7508–7510.
TMS-Cl
Ar BF3 K
(– TMS-F)
2
Ar BF2
7
+
KCl
Ar B(OH)F2 K
(– HCl)
4
TMS-Cl,
H2O
3
Ar B(OH)2
8. Chan, D. M. T.; Monaco, K. L.; Li, R.; Bonne, D.; Clark,
C. G.; Lam, P. Y. S. Tetrahedron Lett. 2003, 44, 3863–
3865.
Scheme 3.
9. Decicco, C. P.; Song, Y.; Evans, D. A. Org. Lett. 2001, 3,
1029–1032.
10. Koolmeister, T.; Sodergren, M.; Scobie, M. Tetrahedron
Lett. 2002, 43, 5965–5968.
11. Nakamura, H.; Fujiwara, M.; Yamamoto, Y. J. J. Org.
Chem. 1998, 63, 7529–7530.
12. Song, Y.-L.; Morin, C. Synlett 2001, 266–268.
13. Coutts, S. J.; Adams, J.; Krolikowski, D.; Snow, R.
Tetrahedron Lett. 1994, 35, 5109–5112.
lithium hydroxide. The only by-products were inorganic
salts and the volatile trimethylsilyl fluoride. Noteworthy
is the fact that these conditions are compatible with base
sensitive substrates, such as the free phenol (compare
methods A and B, entry 4) and that the procedure led
to an improved isolated yield of difficult substrates such
as those containing ortho electron-donating substituents
(compare methods A and B, entry 5).
14. Pennington, T. E.; Hardiman, C.; Hutton, C. A. Tetra-
hedron Lett. 2004, 45, 6657–6660.
In conclusion, implementation of a practical two-step
protocol for the mild deprotection of pinacolyl boro-
nate esters has been demonstrated. Following conver-
sion of the pinacolyl boronate to the corresponding
trifluoroborate with potassium hydrogen fluoride, sub-
sequent fluoride removal/hydroxylation was achieved
with alkali metal bases or more effectively using tri-
methylsilyl chloride and water. These mild conditions
tolerated a range of functional groups and were rela-
tively unaffected by the steric or electronic properties
of the aromatic ring.
15. Molander, G. A.; Rivero, M. R. Org. Lett. 2002, 4, 107–
109.
16. Darses, S.; Geneˆt, J.-P. Eur. J. Org. Chem. 2003, 4313–
4327.
17. Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.;
Schrimpf, M. R. J. Org. Chem. 1995, 60, 3020–3027.
18. Aylward, G.; Findlay, T. SI Chemical Data, 3rd ed.;
Jacaranda Wiley Ltd: Berlin, 1994; p 125.
19. The Merck Index of Chemicals and Drugs; Stecher, P. G.,
Ed.; Merck & Co: Rahway, NJ, USA, 1960; p 613.
20. Molander, G. A.; Ito, T. Org. Lett. 2001, 3, 393–396.
21. Molander, G. A.; Biolatto, B. Org. Lett. 2002, 4, 1867–
1870.
22. Thadani, A. N.; Batey, R. A. Org. Lett. 2002, 2, 3827–
3830.
References and notes
23. Batey, R. A.; Quach, T. D. Tetrahedron Lett. 2001, 42,
9099–9103.
1. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
2. Roush, W. R.; Adam, M. A.; Walts, A. E.; Harris, D. J. J.
Am. Chem. Soc. 1986, 108, 3422–3434.
3. Flamme, E. M.; Roush, W. R. J. Am. Chem. Soc. 2002,
124, 13644–13645.
24. Representative procedure for preparation of potassium
aryltrifluoroborates 2 (Table 2, entry 12): to a solution of
4-bromo-3-methoxycarbonylphenyl pinacolylboronate (814
mg, 2.39 mmol) in methanol (7 mL) was added aqueous
potassium hydrogen fluoride (3.0 mL, 4.5 M, 13.5 mmol).
The resulting white slurry was stirred at room temperature
4. Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003,
42, 5400–5449.