Organic Letters
Letter
Voc of their devices (Figure 3d), although BThP−DPP has
relatively lower HOMO than BTrP−DPP. Additionally, the
transmission electron microscopy (TEM) images show high
phase separation and severe aggregation in pristine BThP−
DPP/PC BM-blended films (Figure 3e), which may be
tions (Dingshan), and the Six Talent Plan of Jiangsu Province
(2016XCL050).
REFERENCES
■
7
1
(1) Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L.
Chem. Rev. 2015, 115, 12666.
attributed to the poor miscibility of BThP−DPP with
PC BM due to its intermolecular S···S interactions to form
(2) Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.;
Yan, H. Nat. Energy 2016, 1, 15027.
7
1
12
large aggregation domains.
(
3) Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia,
B.; Wang, Z.; Lu, K.; Ma, W.; Wei, Z. Nat. Commun. 2016, 7, 13740.
4) Gao, K.; Zhu, Z.; Xu, B.; Jo, S. B.; Kan, Y.; Peng, X.; Jen, A. K.
Adv. Mater. 2017, 29, 1703980.
5) Dai, S.; Zhao, F.; Zhang, Q.; Lau, T. K.; Li, T.; Liu, K.; Ling, Q.;
Wang, C.; Lu, X.; You, W.; Zhan, X. J. Am. Chem. Soc. 2017, 139,
336.
In summary, we succeed in developing an efficient synthetic
route to prepare fused OSC building blocks of BThP-Br and
BTrP-Br with a rigid perylene core for high photovoltaic
property and branched alkyl chains for good solubility and
morphology control; the consequently constructed two novel
small molecular OSC donors of BThP−DPP and BTrP−DPP
in the A−FD−A structure with the widely used acceptor of
DPP show excellent solubility, high thermal stabilities, and
good optical and electrochemical properties for photovoltaic
applications, owing to the synergistic effects of heteroatom
substitution, fused 2D-conjugation, flexible alkyl introduction,
and A−FD−A architecture. Specifically, by only replacing the
central S atom in the perylene-fused benzoazoles of BThP−
DPP with an N atom, the band gap and HOMO/LUMO
energy levels of the resulting BTrP−DPP are slightly increased
owing to the electron-donating feature of N, but the light-
absorption ability is significantly enhanced and the additional
branched alkyl chine on N of BTrP−DPP would be helpful for
increasing its solubility and morphology/domain control of the
blend films with PC BM for OSCs. Therefore, the BTrP−
(
(
1
(6) Chen, R.; Zheng, C.; Li, C.; Li, H.; Wang, Z.; Tang, Y.; Jiang, H.;
Tan, Z.; Huang, W. Polym. Chem. 2016, 7, 780.
(
7) Kan, B.; Feng, H.; Wan, X.; Liu, F.; Ke, X.; Wang, Y.; Wang, Y.;
Zhang, H.; Li, C.; Hou, J.; Chen, Y. J. Am. Chem. Soc. 2017, 139,
929.
8) Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.;
Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268.
9) Gao, G.; Liang, N.; Geng, H.; Jiang, W.; Fu, H.; Feng, J.; Hou, J.;
Feng, X.; Wang, Z. J. Am. Chem. Soc. 2017, 139, 15914.
10) Feng, J.; Jiang, W.; Wang, Z. Chem. - Asian J. 2018, 13, 20.
4
(
(
(
(11) Li, C.; Wonneberger, H. Adv. Mater. 2012, 24, 613.
(12) Hu, H.; Li, Y.; Zhang, J.; Peng, Z.; Ma, L.-k.; Xin, J.; Huang, J.;
Ma, T.; Jiang, K.; Zhang, G.; Ma, W.; Ade, H.; Yan, H. Adv. Energy
Mater. 2018, 8, 1800234.
(
13) Hendsbee, A. D.; Sun, J.-P.; Law, W. K.; Yan, H.; Hill, I. G.;
Spasyuk, D. M.; Welch, G. C. Chem. Mater. 2016, 28, 7098.
14) Wu, W.; Zhang, G.; Xu, X.; Wang, S.; Li, Y.; Peng, Q. Adv.
Funct. Mater. 2018, 28, 1707493.
15) Hartnett, P. E.; Timalsina, A.; Matte, H. S.; Zhou, N.; Guo, X.;
71
DPP/PC BM-based OSCs show higher photovoltaic perform-
7
1
(
ance than those of BTrP−DPP/PC BM with PCEs up to
71
2
.45% and 2.88%, respectively. These findings provide
(
important clues for the design of fused 2D-conjugated
molecules with simultaneously high solubility, stability, and
optoelectronic properties for OSCs.
Zhao, W.; Facchetti, A.; Chang, R. P.; Hersam, M. C.; Wasielewski,
M. R.; Marks, T. J. J. Am. Chem. Soc. 2014, 136, 16345.
(16) Zheng, Q.; Jung, B.; Sun, J.; Katz, H. J. Am. Chem. Soc. 2010,
1
32, 5394.
ASSOCIATED CONTENT
Supporting Information
(17) Zhang, Z.; Peng, B.; Liu, B.; Pan, C.; Li, Y.; He, Y.; Zhou, K.;
■
Zou, Y. Polym. Chem. 2010, 1, 1441.
*
S
(18) Tang, A.; Zhan, C.; Yao, J.; Zhou, E. Adv. Mater. 2017, 29,
1600013.
(19) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.;
Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
(
20) Zhou, Y.; Liu, W.; Zhang, W.; Cao, X.; Zhou, Q.; Ma, Y.; Pei, J.
J. Org. Chem. 2006, 71, 6822.
21) Wang, T.; Pearson, A. J.; Lidzey, D. G. J. Mater. Chem. C 2013,
, 7266.
(22) Dou, L.; Liu, Y.; Hong, Z.; Li, G.; Yang, Y. Chem. Rev. 2015,
15, 12633.
23) Li, M.; Zhang, W.; Tang, X.; Jin, J.; Wang, H.; Chen, L.; Lv, W.;
Chen, R.; Huang, W. ACS Sustainable Chem. Eng. 2017, 5, 11668.
24) Sweetnam, S.; Graham, K. R.; Ngongang Ndjawa, G. O.;
Synthesis and characterization, thermal properties,
electrochemical properties, DFT calculations and device
fabrication, and characterization data including Schemes
S1−S3, Figures S1−S18, and Table S1 (PDF)
(
1
1
(
AUTHOR INFORMATION
■
(
Heumuller, T.; Bartelt, J. A.; Burke, T. M.; Li, W.; You, W.; Amassian,
A.; McGehee, M. D. J. Am. Chem. Soc. 2014, 136, 14078.
*
*
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This study was supported in part by the National Natural
Science Foundation of China (21674049, 21772095 and
■
6
1704089), Science Fund for Distinguished Young Scholars of
Jiangsu Province of China (BK20150041), 1311 Talents
Program of Nanjing University of Posts and Telecommunica-
D
Org. Lett. XXXX, XXX, XXX−XXX