C O M M U N I C A T I O N S
Table 1. Acid Strength and Acid Amount of Solid Acid Catalysts
some of the active sites on the surface and cause the BET surface
area to decrease from 292 to 133.25 m /g (Figure S6). The loss of
(measured by Hammett Indicators and n-Butylamine Titration)
2
acid amount
catalytic activity can also be ascribed to sulfate leaching during
each catalytic run. This is demonstrated by the fact that the used
catalyst can be partially regenerated to 60% its original activity by
treatment with new sulfuric acid. Elemental analysis shows no
increase in %C, demonstrating that loss of surface area is not due
to build up of polymers.
In summary, this study provides a straightforward demonstration
of the influence of acid sites and confinement effect in 1-hexene
isomerization catalyzed over sulfated mesoporous Ta oxides. These
catalysts showed higher activities than Amberlyst 15, HY-zeolite,
and H-ZSM5. Among the three different pore sizes of sulfated
sample
Ho
(mmol/g)
C12 meso Ta
C12 H2SO4 meso Ta
HY-zeolite
H-ZSM5
Amberlyst 15
-6.6
-8.2
-6.6
-4.4
0.40
19.8
1.55
16.1
N/A
N/A
mesoporous Ta oxides studied, C12
2 4
H SO mesoporous Ta showed
both the highest activity and selectivity, which can be attributed to
its high BET surface area, increased concentration of Brønsted sites
on the surface of the mesoporous channels, and optimal pore size
for this particular reaction.
Acknowledgment. The authors acknowledge NSERC for the
financial support of this research.
Supporting Information Available: Detailed experimental pro-
cedure, powder X-ray diffraction patterns, N adsorption/desorption
2
isotherm, and FTIR spectra. This material is available free of charge
via the Internet at http://pubs.acs.org.
References
(
1) Yoshitake, H.; Tatsumi, T. Chem. Mater. 2003, 15, 1695.
(
2) (a) Kapoor, M. P.; Ichihashi, Y.; Kuraoka, K.; Matsumura, Y. J. Mol.
Catal. A 2003, 198, 303. (b) Tian, Z. R.; Tong, W.; Wang, J. Y.; Duan,
N. G.; Krishnan, V. V.; Suib, S. L. Science 1997, 276, 926.
(
(
(
3) (a) Antonelli, D. M.; Ying, Y. J. Angew. Chem., Int. Ed. Engl. 1996, 35,
426. (b) Antonelli, D. M.; Ying, Y. J. Chem. Mater. 1996, 8, 874. (c)
Antonelli, D. M.; Nakahira, A.; Ying, Y. J. Inorg. Chem. 1996, 35, 3126.
4) (a) Yue, C.; Trudeau, M. L.; Antonelli, D. M. Chem. Commun. 2006,
1
918. (b) Yue, C.; Trudeau, M. L.; Antonelli, D. M. Can. J. Chem. 2005,
8
3, 308.
5) (a) Rao, Y.; Trudeau, M. L.; Antonelli, D. M. J. Am. Chem. Soc. 2006,
1
28, 13997. (b) Sun, T; Ying, J. Y. Nature 1997, 389, 704. (c) Hu, X.;
Skadtchenko, O. B.; Trudeau, M.; Antonelli, D. M. J. Am. Chem. Soc.
006, 128, 11740.
6) (a) Takahara, Y.; Kondo, J. N.; Lu, D.; Domen, K. Solid State Ionics
2
(
2
002, 151, 305. (b) Takahara, Y.; Kondo, J. N.; Takata, T.; Lu, D.; Domen,
K. Chem. Mater. 2001, 13, 1194.
(
7) Kuznetsov, P. N. J. Catal. 2003, 218, 12.
(
8) (a) Li, D.; Li, M.; Chu, Y. C.; Nie, H; Shi, Y. Catal. Today 2003, 81, 65.
(
b) Sundaramurthy, V.; Lingappan, N. J. Mol. Catal. A 2000, 160, 367.
c) Yin, C.; Zhao, R.; Liu, C. Fuel 2005, 84, 701.
(
(
9) (a) Mitkova, M.; Kurtev, K. J. Chin. Chem. Soc. 2005, 52, 1189. (b)
Slomkiewicz, P. M. Appl. Catal. A 2006, 301, 232.
(
10) (a) Salvini, A.; Frediani, P.; Piacenti, F. J. Mol. Catal. A 2000, 159, 185.
(b) Fontal, B.; Reyes, M.; Suarez, T.; Bellandi, F.; Ruiz, N. J. Mol. Catal.
A 1999, 149, 87. (c) Dallmann, K.; Buffon, R. J. Mol. Catal. A 2002,
185, 187. (d) Zhang, J.; Gao, H.; Ke, Z.; Bao, F.; Zhu, F.; Wu, Q. J. Mol.
Catal. A 2005, 231, 27. (e) Matsumoto, T.; Yoshida, H. Catal. Lett. 2001,
Figure 1. 1-Hexene isomerization on different catalysts: (a) 1-hexene
conversion rate with time; (b) ratio of trans/cis-2-hexene with time.
72, 107. (f) Yue, C. J.; Liu, Y.; He, R. J. Mol. Catal. A 2006, 259, 17.
transfer process.16 The initial proton is transferred from the acid
sites on the surface of the catalyst to the double bond of 1-hexene,
and then the hydride shift along the linear chain produces cis-2-
hexene and trans-2-hexene. To eliminate the potential effect of free
(11) (a) Talukdar, A. K.; Bhattacharyya, K. G.; Baba, T.; Ono, Y. Appl. Catal.
A 2001, 213, 239. (b) Pu, M.; Li, Z. H.; Gong, Y. J.; Wu, D.; Sun, Y. H.
J. Mater. Sci. Lett. 2003, 22, 955. (c) Logie, V.; Wehrer, P.; Katrib, A.;
Maire, G. J. Catal. 2000, 189, 438. (d) Wrzyszcz, J.; Zawadzki, M.;
Trzeciak, A. M.; Tylus, W.; Ziolkowski, J. J. Catal. Lett. 2004, 93, 85.
(
e) Wehrer, P.; Bigey, C.; Hilaire, L. Appl. Catal. A 2003, 243, 109. (f)
H SO
2 4
on selectivity, a separate experiment was performed using
Pariente, S.; Trens, P.; Fajula, F.; Renzo, F. D.; Tanchoux, N. Appl. Catal.
A 2006, 307, 51. (g) Van Grieken, R.; Escola, J. M.; Moreno, J.; Rodriguez,
R. Appl. Catal. A 2006, 305, 176.
a drop of pure sulfuric acid as catalyst (Figure S5), the conversion
of 1-hexene reached 31.18% after 6 h, and an only slightly higher
(
12) (a) Bezouhanova, C.; Lechert, H.; Taralanska, G.; Meyer, A. React. Kinet.
Catal. Lett. 1989, 40, 209. (b) Li, M.; Chu, Y.; Nie, H.; Shi, Y.; Li, D.
Stud. Surf. Sci. Catal. 2003, 145, 403. (c) DiGregorio, F.; Keller, V.;
DiCostanzo, T.; Vignes, J. L.; Michel, D.; Maire, G. Appl Catal. A 2001,
218, 13.
ratio (1.5) was obtained as compared to the C
Nevertheless, this value is still far behind the selectivity of C12
SO mesoporous Ta oxide, which establishes that pore size is
crucial to the selectivity in this system.
The reusability of C12 SO mesoporous Ta was tested by
6
and C18 samples.
H
2
4
(13) (a) Wu, Z.; Wang, Q.; Xu, L.; Xie, S. Stud. Surf. Sci. Catal. 2002, 142A.
(
b) Eswaramoorthi, I.; Sundaramurthy, V.; Lingappan, N. Stud. Surf. Sci.
H
2
4
Catal. 2001, 135
conducting three continuous runs using the same catalyst. The
results showed that its catalytic activity declined linearly, the
conversion of 1-hexene decreased from almost 100% conversion
for the first run to 76% for the second run, and then to 40% for the
third run. This can be attributed to partial pore blockage caused by
isomerization products deposited inside the channel, which occupy
(14) Proell, J. M.; Mosley, E. E.; Powell, G. L.; Jenkins, T. C. J. Lipid Res.
2
002, 43, 2072.
(
15) Pariente, S.; Trens, P.; Fajula, F.; Renzo, F. D.; Tanchoux, N. Appl. Catal.
A 2006, 307, 51.
(16) (a) Abbot, J.; Wojciechowski, B. W. J. Catal. 1984, 90, 270. (b) Abbot,
J.; Wojciechowski, B. W. J. Catal. 1985, 92, 398.
JA076584N
J. AM. CHEM. SOC.
9
VOL. 130, NO. 2, 2008 395