Organic Letters
Letter
́
(6) Hubbell, W. L.; Lopez, C. J.; Altenbach, C.; Yang, Z.
Technological Advances in Site-Directed Spin Labeling of Proteins.
Curr. Opin. Struct. Biol. 2013, 23 (5), 725−733.
acids, which can then be separated from the desired L-amino
acid.25,26 Unfortunately, this was not effective for 7, probably
due to inability of the DAAO active site to accommodate its
steric bulk. Fortunately, however, this was very effective for 6
and 8, which were then obtained enatiomerically pure (>99%)
based on Marfey’s assay.24
In conclusion, a facile and enantioselective synthesis of spin-
labeled amino acids 6−8 was achieved. Enantiopure 6 and 8
can be used directly for incorporation into proteins or peptides
by way of either SPPS or genetic incorporation methods.
Amino acid 7 (90:10 er) can be used directly for the latter but
may require further resolution of diastereomers for SPPS.
These amino acids are better mimics for replicating the steric
size and configuration of canonical amino acids in target
proteins. As spin-labels, they can allow better measurements of
distances in biological systems and more closely resemble side
chain natural conformations for structural and dynamics
studies.
(7) Schreier, S.; Bozelli, J. C.; Marín, N.; Vieira, R. F. F.; Nakaie, C.
R. The Spin Label Amino Acid TOAC and Its Uses in Studies of
Peptides: Chemical, Physicochemical, Spectroscopic, and Conforma-
tional Aspects. Biophys. Rev. 2012, 4 (1), 45−66.
(8) Bonucci, A.; Ouari, O.; Guigliarelli, B.; Belle, V.; Mileo, E. In-
Cell EPR: Progress towards Structural Studies Inside Cells.
(9) Todd, A. P.; Cong, J.; Levinthal, F.; Levinthal, C.; Hubell, W. L.
Site-directed Mutagenesis of Colicin E1 Provides Specific Attachment
Sites for Spin Labels Whose Spectra Are Sensitive to Local
Conformation. Proteins: Struct., Funct., Genet. 1989, 6 (3), 294−305.
(10) Savitsky, A.; Dubinskii, A. A.; Zimmermann, H.; Lubitz, W.;
̈
Mobius, K. High-Field Dipolar Electron Paramagnetic Resonance
(EPR) Spectroscopy of Nitroxide Biradicals for Determining Three-
Dimensional Structures of Biomacromolecules in Disordered Solids. J.
Phys. Chem. B 2011, 115 (41), 11950−11963.
(11) Joseph, B.; Tormyshev, V. M.; Rogozhnikova, O. Y.;
Akhmetzyanov, D.; Bagryanskaya, E. G.; Prisner, T. F. Selective
High-Resolution Detection of Membrane Protein−Ligand Interaction
in Native Membranes Using Trityl−Nitroxide PELDOR. Angew.
Chem., Int. Ed. 2016, 55 (38), 11538−11542.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge at
(12) Reichenwallner, J.; Hauenschild, T.; Schmelzer, C. E. H.;
̈
Hulsmann, M.; Godt, A.; Hinderberger, D. Fatty Acid Triangulation
in Albumins Using a Landmark Spin Label. Isr. J. Chem. 2019, 1−17.
(13) Hauenschild, T.; Reichenwallner, J.; Enkelmann, V.;
Hinderberger, D. Characterizing Active Pharmaceutical Ingredient
Binding to Human Serum Albumin by Spin-Labeling and EPR
Spectroscopy. Chem. - Eur. J. 2016, 22 (36), 12825−12838.
(14) Haugland, M. M.; Anderson, E. A.; Lovett, J. E. Tuning the
Properties of Nitroxide Spin Labels for Use in Electron Paramagnetic
Resonance Spectroscopy through Chemical Modification of the
Nitroxide Framework. Electron Paramagn. Reson. 2016, 25, 1−34.
(15) Brodrecht, M.; Herr, K.; Bothe, S.; de Oliveira, M.; Gutmann,
T.; Buntkowsky, G. Efficient Building Blocks for Solid-Phase Peptide
Synthesis of Spin Labeled Peptides for Electron Paramagnetic
Resonance and Dynamic Nuclear Polarization Applications. Chem-
PhysChem 2019, 20 (11), 1475−1487.
Experimental details and spectra (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
(16) Schmidt, M. J.; Borbas, J.; Drescher, M.; Summerer, D. A
Genetically Encoded Spin Label for Electron Paramagnetic Resonance
Distance Measurements. J. Am. Chem. Soc. 2014, 136 (4), 1238−
1241.
(17) Wang, L.; Brock, A.; Herberich, B.; Schultz, P. G. Expanding
the Genetic Code of Escherichia Coli. Science (Washington, DC, U. S.)
2001, 292 (5516), 498−500.
(18) Wang, L.; Schultz, P. G. Expanding the Genetic Code. Angew.
Chem., Int. Ed. 2005, 44 (1), 34−66.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a Catalyst Grant from the
Canadian Institute For Advanced Research and by a Queen
́
Elizabeth II Graduate Scholarship (WV). We thank Bela Reiz
(University of Alberta) and Dr. Angelina Morales-Izquierdo
(University of Alberta) for their help in the acquisition and
interpretation of mass spectrometry data. We would also like to
thank Mark Miskolzie (University of Alberta) for his help in
the analysis of spectral data.
(19) Liu, C. C.; Schultz, P. G. Adding New Chemistries to the
Genetic Code. Annu. Rev. Biochem. 2010, 79 (1), 413−444.
(20) Soloshonok, V. A.; Izawa, K. Asymmetric Synthesis and
Application of α-Amino Acids. ACS Symp. Ser. 2009, 1009, 512.
(21) Zhu, Z.; Xiao, L.; Xie, Z.; Le, Z. Recent Advances in the α-
C(Sp3)-H Bond Functionalization of Glycine Derivatives. Youji
Huaxue 2019, 39, 2345−2364.
REFERENCES
■
(1) Martin, R. E.; Pannier, M.; Diederich, F.; Gramlich, V.; Hubrich,
M.; Spiess, H. W. Determination of End-to-End Distances in a Series
of TEMPO Diradicals of up to 2.8 nm Length with a New Four-Pulse
Double Electron Electron Resonance Experiment. Angew. Chem., Int.
Ed. 1998, 37 (20), 2833−2837.
(22) Haugland, M. M.; El-Sagheer, A. H.; Porter, R. J.; Pena, J.;
̃
Brown, T.; Anderson, E. A.; Lovett, J. E. 2′-Alkynylnucleotides: A
Sequence- and Spin Label-Flexible Strategy for EPR Spectroscopy in
DNA. J. Am. Chem. Soc. 2016, 138 (29), 9069−9072.
(23) Belokon’, Y. N.; Tararov, V. I.; Maleev, V. I.; Savel’eva, T. F.;
Ryzhov, M. G. Improved Procedures for the Synthesis of (S)-2-[N-
(N’-Benzyl- Prolyl)Amino]Benzophenone (BPB) and Ni(II) Com-
plexes of Schiff’s Bases Derived from BPB and Amino Acids.
Tetrahedron: Asymmetry 1998, 9 (23), 4249−4252.
(2) Pannier, M.; Veit, S.; Godt, A.; Jeschke, G.; Spiess, H. W. Dead-
Time Free Measurement of Dipole-Dipole Interactions between
Electron Spins. J. Magn. Reson. 2000, 142 (2), 331−340.
(3) Jeschke, G. DEER Distance Measurements on Proteins. Annu.
Rev. Phys. Chem. 2012, 63 (1), 419−446.
(4) Sahu, I. D.; Lorigan, G. A. Site-Directed Spin Labeling EPR for
Studying Membrane Proteins. BioMed Res. Int. 2018, 3248289.
(5) Jeschke, G. The Contribution of Modern EPR to Structural
Biology. Emerg. Top. Life Sci. 2018, 2 (1), 9−18.
(24) Bhushan, R.; Bruckner, H. Marfey’s Reagent for Chiral Amino
̈
Acid Analysis: A Review. Amino Acids 2004, 27 (3−4), 231−247.
(25) Parmeggiani, F.; Lovelock, S. L.; Weise, N. J.; Ahmed, S. T.;
Turner, N. J. Synthesis of D - and L -Phenylalanine Derivatives by
D
Org. Lett. XXXX, XXX, XXX−XXX