2 3 5 2
Non-centrosymmetric rubidium rare-earth nitrates Rb RE(NO ) ·4H O
ence remains unremarkable (∆ρmax ϭ 1.053 e·AϪ3, ∆ρmin
Ϫ1.027 e·A ).
˚
ϭ
Crystal Structure Determination
˚
Ϫ3
2 3 5 2
Rb Pr(NO ) ·4H O: Unit cell parameters of a cube-shaped single
crystal (0.35 ϫ 0.26 ϫ 0.24 mm) were obtained by least-squares
refinement from accurate angular settings of 25 reflection
Further details of the crystal structure investigations are available
from the Fachinformationszentrum Karlsruhe, 76344 Eggen-
stein-Leopoldshafen, Germany on quoting the depository
(20.78° < θ < 23.76°) located and centred on a four-circle dif-
numbers CSD-420181 (Rb
Rb Pr(NO ·4H O), the name of the authors, and citation of
the paper.
2 3 5 2
Nd(NO ) ·4H O) and CSDϪ420187
fractometer. Room temperature intensity data of 10174 reflections
were collected with a EnrafϪNonius MACH3 diffractometer [20]
(
2
3
)
5
2
with ω/2θ scan technique and graphite monochromatized
˚
Mo-K
α
radiation (λ ϭ 0.7107 A) within the full hemisphere
(
Ϫ15 Յ h Յ 15, Ϫ12 Յ k Յ 12, Ϫ25 Յ l Յ 25; 2θ < 30.41°).
Acknowledgement
The authors thank Prof. A. Möller, Institute of Inorganic Chemisty,
Preliminary investigations confirm a lattice centering, therefore
only reflections with h ϩ k ϭ 2n were measured. The data were
averaged to give 5239 unique reflections (Rint ϭ 0.056). Three
standard reflections monitored periodically every 100 reflections
showed no significant variation in position and intensity (max
University of Cologne, for measurement of absorption spectra.
References
3
.72 %). Lorentz, polarisation and empirical absorption correction
Ϫ1
via psi-scan of nine reflections were applied (µ ϭ 8.495 mm
T
space group Cc (No. 9) was proven to be consistent with the sys-
tematic absences in the original intensity data. Refinement was per-
,
[1] C. A. Ebbers, L. D. DeLoach, M. Webb, D. Eimerl, S. P. Vel-
sko, D. A. Keszler, IEEE J. Quantum Electron. 1993, 29,
497Ϫ507.
min ϭ 0.8204, Tmax ϭ 0.9995, F(000) ϭ 1312). The monoclinic
[
2] H. Hellwig, S. Rühle, P. Held, L. Bohat y´ , J. Appl. Crystallogr.
2000, 33, 380Ϫ386.
3] A. G. Vigdorchik, Y. A. Malinovskii, A. G. Dryuchko, V. B.
Kalinin, I. A. Verin, S. Y. Stefanovich, Sov. Phys. Crystallogr.
2
formed using full-matrix least-squares on F with anisotropic dis-
[
placement factors for non-hydrogen atoms, a structure factor
weighting scheme and secondary isotropic extinction. Most of the
non-hydrogen atoms were located using direct methods, remaining
atoms were found in Fourier maps. In difference Fourier synthesis
the strongest peaks corresponded (according to the stereochemical
data) to possible positions of hydrogen and were identified as hy-
1
992, 37, 783Ϫ791.
[
4] N. Audebrand, J. P. Auffr e´ dic, M. Lou e¨ r, N. Guillou, D. Lou e¨ r,
Solid State Ionics 1996, 84, 323Ϫ333.
[5] M. G. Wyrouboff, Bull. Soc. Franc. Min e´ ral. 1907, 30,
299Ϫ323.
drogen atoms. All hydrogen atoms were restrained in length [6] M. C. Marignac, Ann. Chim. Phys. (S e´ r. 4) 1873, 30, 45Ϫ69.
˚
[7] M. H. Dufet, Bull. Soc. Franc. Min e´ ral. 1888, 11, 143Ϫ148.
(
0.95(2) A] and constrained in the isotropic displacement param-
eter (1.2 times Uequiv of the bonded oxygen atom). The anisotropic
refinement of 269 parameters (4055 reflections with I >4σ(I ))
(F ) ϭ 0.0691 and S ϭ 1.048
(∆/σ)max ϭ (∆/σ)min ϭ 0.000). The Flack parameter is equal to
Ϫ0.00(1). The final difference map showed no unusual features
[
[
[
8] E. H. Kraus, Z. Kristallogr. 1901, 34, 397Ϫ431.
9] A. Fock, Z. Kristallogr. 1894, 22, 29Ϫ42.
0
0
10] P. Groth, Chemische Krystallographie, Wilhelm Engelmann,
Leipzig, 1908, vol. 2, pp. 152Ϫ155.
11] B. Eriksson, L. O. Larsson, L. Niinistö, Acta Chem. Scand. A
2
yielded a residual R(F) ϭ 0.0349, R
w
(
[
1982, 36, 465Ϫ470.
˚
Ϫ3
˚
Ϫ3
(∆ρmax ϭ 1.085 e·A , ∆ρmin ϭ Ϫ0.660 e·A ). All calculation [12] G. Meyer, E. Manek, A. Reller, Z. Anorg. Allg. Chem. 1990,
were performed on a DEC 300 AXP and a 786 PC computer using
the WingX [21] and SHELX97 [22] program systems.
591, 77Ϫ86.
[13] M. Najafpour, P. Starynowicz, Acta Crystallogr., Sect. E 2006,
62, i145Ϫi146.
[
[
14] G. Jantsch, S. Wigdorow, Z. Anorg. Chem. 1911, 69, 221Ϫ231.
15] A. G. Vigdorchik, Y. A. Malinovskii, A. G. Dryuchko, Sov.
Phys. Crystallogr. 1990, 35, 823Ϫ825.
2 3 5 2
Rb Nd(NO ) ·4H O: Procedures of the measurement of the
crystal parameter, the data collection and refinement of the
structure are similar to those used in the structure determina-
[
16] P. Held, H. Hellwig, S. Rühle, L. Bohat y´ , J. Appl. Crystallogr.
2000, 33, 372Ϫ379.
tion of Rb
2
Pr(NO
3
)
5
·4H
2
O.
A
suitable single crystal
(
0.36 ϫ 0.28 ϫ 0.27 mm) was carefully selected under a polarizing [17] M. V. Hobden, J. Appl. Phys. 1967, 38, 4365Ϫ4372.
microscope and mounted in a glass capillary. The cell parameters
were obtained by 25 reflection (20.74° < θ < 24.95°). 10139 meas-
ured reflections (within a 2θ range of 30.40°) were averaged to give
[18] Z. K. Odinets, N. A. Sal’nikova, A. K. Molotkin, T. N.
Ivanova, Russ. J. Inorg. Chem. 1989, 34, 467Ϫ470.
[
[
19] B. Edl e´ n, Metrologia 1966, 2, 71Ϫ80.
20] EnrafϪNonius, MACH3 EXPRESS 1989, Delft, The Nether-
lands.
5
222 unique reflections (Rint ϭ 0.049, decay 2.37 %) corrected by
Ϫ1
absorption correction (µ ϭ 8.717 mm , Tmin ϭ 0.7331, Tmax
.9990, F(000) ϭ 1316). The anisotropic refinement of 269 param-
eters (4416 reflections with I >4σ(I )) yielded a residual R(F) ϭ
(F ) ϭ 0.0562 and S ϭ 1.038 ((∆/σ)max ϭ (∆/σ)min
.000). The Flack parameter is equal to Ϫ0.013(9). The final differ-
ϭ
[
21] L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837Ϫ838.
0
[22] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112Ϫ122.
0
0
2
0
.0270, R
w
ϭ
Received: December 18, 2008
Published Online: June 10, 2009
0
Z. Anorg. Allg. Chem. 2009, 2236Ϫ2241
2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.zaac.wiley-vch.de
2241