2
086
T. Arai et al. / Tetrahedron: Asymmetry 13 (2002) 2083–2087
Furthermore, we examined another type of hetero-
bimetallic multifunctional catalyst, which consisted of
gallium, sodium and two BINOL moieties (GaNabis(bi-
T.; Ohtake, K.; Kodaka, R.; Hirokawa, Y.; Shirai, N.;
Soai, K. Tetrahedron Lett. 2000, 41, 3123–3126; (h) Mar-
aval, V.; Laurent, R.; Caminade, A.-M.; Majoral, J.-P.
Organometallics 2000, 19, 4025–4029; (i) Fan, Q.-H.;
Chen, Y.-M.; Chen, X.-M.; Jiang, D.-Z.; Xi, F.; Chan, A.
S. C. Chem. Commun. 2000, 789–790; (j) Ropartz, L.;
Morris, R. E.; Foster, D. F.; Cole-Hamilton, D. J. Chem.
Commun. 2001, 361–362.
. Breinbauer, R.; Jacobsen, E. N. Angew. Chem., Int. Ed.
Engl. 2000, 39, 3604–3607.
. (a) Sasai, H.; Arai, T.; Satow, Y.; Houk, K. N.;
Shibasaki, M. J. Am. Chem. Soc. 1995, 117, 6194–6198;
2
0
naphthoxide) complex) (GaSB). A solution of 8 (G1
DSB) was treated with GaCl and NaO-t-Bu to form
3
G1 dendritic GaSB as an insoluble catalyst, which was
shown to have moderate catalytic activity in the asym-
metric Michael reactions. Moreover, the combined use
2
1
of 0.5 equiv. of NaO-t-Bu and 10 mol% dendritic
GaSB showed enhanced catalyst activity, affording the
Michael adduct 13 in 83% yield with up to 97% ee
4
5
22
(
Table 1, entry 7).
(
b) Shibasaki, M.; Sasai, H.; Arai, T. Angew. Chem., Int.
In conclusion, dendrimer-supported heterobimetallic
catalysts such as ALB and GaSB promoted the Michael
reaction with excellent enantiomeric excess. These reac-
tions are the first examples of the immobilization of a
heterobimetallic multifunctional catalyst on the periph-
ery of a dendrimer surface. Further applications toward
the immobilization of other heterobimetallic catalysts,
consisting of plural ligands, are the focus of our contin-
uing efforts.
Ed. Engl. 1997, 36, 1236–1256.
6
. Recent progress with re-usable heterobimetallic multi-
functional asymmetric catalysts, see: (a) Arai, T.; Hu,
Q.-S.; Zheng, X.-F.; Pu, L.; Sasai, H. Org. Lett. 2000, 2,
4
261–4263; (b) Kim, Y. S.; Matsunaga, S.; Das, J.;
Sekine, A.; Ohshima, T.; Shibasaki, M. J. Am. Chem.
Soc. 2000, 122, 6506–6507; (c) Matsunaga, S.; Ohshima,
T.; Shibasaki, M. Tetrahedron Lett. 2000, 41, 8473–8478;
(
2
d) Jayaprakash, D.; Sasai, H. Tetrahedron: Asymmetry
001, 12, 2589–2595.
7
8
9
. Molecular dynamics simulations using polymer specific
consistent forcefield (PCFF) were performed on Cerius 2
Acknowledgements
(
Accelrys Inc.).
. Bayston, D. J.; Fraser, J. L.; Ashton, M. R.; Baxter, A.
D.; Polywka, M. E. C.; Moses, E. J. Org. Chem. 1998, 63,
This work was supported by a Grant-in-Aid for Scien-
tific Research from the Ministry of Education, Science,
Sports, and Culture, Japan. We thank the technical
staff in the Materials Analysis Center of ISIR, Osaka
University.
3137–3140.
. Freeman, A. W.; Chrisstoffels, L. A. J.; Fr e´ chet, J. M. J.
J. Org. Chem. 2000, 65, 7612–7617.
1
0. Elmorsy, S. S.; Pelter, A.; Smith, K. Tetrahedron Lett.
991, 32, 4175–4176.
1. Selected physical properties of G1 DSB 8: IR (neat)
091.6, 1220.9, 1359.7, 1419.5, 1635.5, 1705.0, 3510.0
1
1
1
−
1 13
cm ; C NMR (67.7 MHz, acetone-D ): l 28.58, 30.38,
6
References
3
1
1
1
1
0.66, 35.87, 67.96, 68.34, 101.12, 106.37, 114.55, 114.90,
15.92, 119.25, 123.44, 123.88, 125.29, 126.82, 127.32,
28.33, 128.64, 128.89, 129.72, 129.89, 129.93, 130.30,
33.69, 134.25, 137.35, 139.80, 140.33, 142.32, 153.68,
1
2
. For a recent review: Grayson, S. M.; Fr e´ chet, J. M. J.
Chem. Rev. 2001, 101, 3819–3867.
. For recent reviews, see: (a) Oosterom, G. E.; Reek, J. N.
H.; Kamer, P. C. J.; P. van Leeuwen, W. N. M. Angew.
Chem., Int. Ed. 2001, 40, 1828–1849; (b) Astruc, D.;
Chardac, F. Chem. Rev. 2001, 101, 2991–3023; (c) Kre-
iter, R.; Kleji, A. W.; Klein Gebbink, R. J. M.; van
Koten, G. In Topics in Current Chemistry; V o¨ gtle, F.;
Schalley, C. A., Eds. Metal Coordination, Self Assembly,
Catalysis. Springer: Berlin, 2001; Vol. 217: Dendrimers
IV, pp. 163–199.
. For representative examples of positive effects of den-
drimer-supported catalysis, see: (a) Reetz, M. T.;
Lohmer, G.; Schwickardi, R. Angew. Chem., Int. Ed.
Engl. 1997, 36, 1526–1529; (b) Francavilla, C.; Bright, F.
V.; Detty, M. R. Org. Lett. 1999, 1, 1043–1046; (c)
Yamago, S.; Furukawa, M.; Azuma, A,; Yoshida, J.
Tetrahedron Lett. 1998, 39, 3783–3786; (d) Kimura, M.;
Sugihara, Y.; Muto, T.; Hanabusa, K.; Shirai, H.;
Kobayashi, N. Chem. Eur. J. 1999, 5, 3495–3500; (e)
Mizugaki, T.; Ooe, M.; Ebitani, K.; Kaneda, K. J. Mol.
Catal. A 1999, 145, 329–333; (f) Piotti, M. E.; Rivera, F.,
Jr.; Bond, R.; Hawker, C. J.; Fr e´ chet, J. M. J. J. Am.
Chem. Soc. 1999, 121, 9471–9472; (g) Sato, I.; Shibata,
25
54.17, 159.14, 160.50, 161.14; [h]D −21.0 (c 0.240,
CHCl ); Mw on GPC analysis: 2600–2800.
3
1
2. Sakamoto, S.; Fujita, M.; Kim, K.; Yamaguchi, K. Tet-
rahedron 2000, 56, 955–964.
13. Selected physical properties of G2 DSB 10: IR (neat)
8
2
2
1
1
1
1
19.7, 1126.4, 1145.6, 1458.1, 1508.2, 1596.9, 1701.1,
−
1
13
923.9, 3410.0 cm ; C NMR (67.7 MHz, CDCl ): l
3
8.56, 30.54, 30.65, 35.87, 68.33, 70.37, 101.17, 106.41,
14.51, 114.88, 119.24, 123.45, 125.29, 125.90, 126.84,
27.31, 128.36, 128.64, 128.82, 129.53, 129.71, 129.87,
29.96, 130.31, 133.65, 135.22, 137.36, 140.17, 153.65,
3
25
54.15, 156.55, 160.69, 161.07; [h]D −30.9 (c 0.745,
CHCl ); Mw on GPC analysis: 5500–5700.
3
1
4. (a) Tsunoda, T.; Nagaku, M.; Nagino, C.; Kawamura,
Y.; Ozaki, F.; Hioki, H.; Ito, S. Tetrahedron Lett. 1995,
36, 2531–2534; (b) Reppy, M. A.; Gray, D. H.; Pindzola,
B. A.; Smithers, J. L.; Gin, D. L. J. Am. Chem. Soc.
2001, 123, 363–371.
15. Polystyrene-supported ALB was prepared by the reaction
of Na-alkoxide of 1 with chloromethylated polystyrene
(catalog No. 038-09524, Wako Pure Chemical Industries,