two-photon excitied Zn2 fluorescent probes remains an
+
methoxy group at the 7-position of quinoline. We anticipate
that the change of the substitution position of the electron-
donating group may alter the ICT process and ion selectivity.
The synthesis of 7-MOQ is shown in Scheme 1 (details
are available in the Supporting Information). The X-ray
interesting and important challenge.
It is known that an efficient Zn2 probe for biological
applications should have sufficient water solubility, high
selectivity, high photostability, and long excitation wave-
+
1
2
length to avoid cell damage. Previously TSQ and Zinquin
have been found to be good Zn probes based on the
quinoline structure. To meet the demand of high selectivity
toward Zn , a strong chelator, i.e., di-2-picolylamine moie-
2
+
13
Scheme 1. Synthesis of 7-MOQ
2+
1
5
16
ty, was incorporated into quinoline. However, the ultra-
violet excitation wavelength (∼350 nm) of these quinoline-
14
based probes might damage living cells. This problem may
be solved with the TPM technique, which employs two
lower-energy, near-infrared photons for excitation.
We notice that most Zn2 probes based on the quinoline
structure poccess an oxygen or nitrogen atom at the 8-posi-
tion of quinoline, which participates in the coordiantion with
+
2
+
13,16
Zn .
It poses an interesting question as to whether the
2
+
sensing affinity and selectivity for Zn will be altered if
the substitution position changes. This change may also affect
the efficiency of molecular internal charge transfer (ICT)
of the chemosensor. Thus, we design and synthesize a novel
quinoline-derived Zn probe, 7-MOQ, which carries a
17
2
+
(
8) (a) Kikuchi, K.; Komatsu, K.; Nagano, T. Curr. Opin. Chem. Biol.
crystal structure of the zinc complex with 7-MOQ (Figure
1) demonstrates that the oxygen atom at the 7-position does
2
2
004, 8, 182. (b) Hirano, T.; Kikuchi, Y.; Nagano, T. J. Am. Chem. Soc.
002, 124, 6555. (c) Burdette, S. C.; Frederckson, C. J.; Bu, W.; Lippard,
S. J. J. Am. Chem. Soc. 2003, 125, 1278. (d) Nolan, E. M.; Jaworski, J.;
Okamoto, K.-I.; Hayashi, Y.; Sheng, M.; Lippard, S. J. J. Am. Chem. Soc.
2
005, 127, 16812. (e) Meng, X.-M.; Zhu, M.-Z.; Liu, L.; Guo, Q.-X.
Tetrahedron Lett. 2006, 47, 1559.
9) (a) Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem.
(
Soc. 2007, 129, 13447. (b) Lim, N. C.; Yao, L.; Freake, H. C.; Bruckner,
C. Bioorg. Med. Chem. Lett. 2003, 13, 2251. (c) Lim, N. C.; Schuster, J. V.;
Porto, M. C.; Tanudra, M. A.; Yao, L.; Freake, H. C.; Br uˆ ckner, C. Inorg.
Chem. 2005, 44, 2018.
(
10) (a) Zhang, Y.; Guo, X.; Si, W.; Jia, L.; Qian, X. Org. Lett. 2008,
1
0, 473. (b) Pearce, D. A.; Jotterand, N.; Carrico, I. S.; Imperiali, B. J. Am.
Chem. Soc. 2001, 123, 5160. (c) Hanaoka, K.; Kikuchi, K.; Kojima, H.;
Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2004, 126, 12470. (d) Zalewski,
P. D.; Forbes, I. J.; Borlinghaus, R.; Betts, W. H.; Lincoln, S. F.; Ward,
A. D. Chem. Biol. 1994, 1, 153. (e) Kimber, M. C.; Mahadevan, I. B.;
Lincoln, S. F.; Ward, A. D.; Tiekink, E. R. T. J. Org. Chem. 2000, 65,
8
204.
(
11) (a) Taki, M.; Wolford, J. L.; O’Halloran, T. V. J. Am. Chem. Soc.
2
004, 126, 712. (b) Bhaskar, A.; Ramakrishna, G.; Twieg, R. J.; Goodson,
T. III. J. Phys. Chem. C 2007, 111, 14607. (c) Kim, H. M.; Seo, M. S.; An,
M. J.; Hong, J. H.; Tian, Y. S.; Choi, J. H.; Kwon, O.; Lee, K. J.; Cho,
B. R. Angew. Chem., Int. Ed. 2008, 47, 5167.
Figure 1. X-ray crystal structure of the zinc complex of 7-MOQ.
(
12) (a) Joshi, B. P.; Cho, W.-M.; Kim, J.; Yoon, J.; Lee, K.-H. Bioorg.
Med. Chem. Lett. 2007, 17, 6425. (b) Jiang, W.; Fu, Q.; Fan, H.; Wang,
W. Chem. Commun. 2008, 259.
(
13) (a) Fahrni, C. J.; O’Halloran, T. V. J. Am. Chem. Soc. 1999, 121,
2+
not participate in coordination with Zn , which differs from
1
1448. (b) Frederickson, C. J.; Kasarskis, E. J.; Ringo, D.; Frederickson,
1
3,16
R. E. J. Neurosci. Methods 1987, 20, 91. (c) Zalewski, F. D.; Forbes, I. J.;
Betts, W. H. Biochem. J. 1993, 296, 403. (d) Liu, Y.; Zhang, N.; Chen, Y.;
Wang, L.-H. Org. Lett. 2007, 9, 315.
the previously reported 8-substituted quinolines.
The
nitrogen atoms of the di-2-picolylamine moiety and quinoline
(
14) Walkup, G. K.; Burdette, S. C.; Lippard, S. J.; Tsien, R. Y. J. Am.
2
ring participate in zinc coordinations. One H O molecule is
Chem. Soc. 2000, 122, 5644.
15) (a) Wong, B. A.; Friedle, S.; Lippard, S. J. J. Am. Chem. Soc. 2009,
31, 7142. (b) Burdette, S. C.; Walkup, G. K.; Spingler, B.; Tsien, R. Y.;
2+
also found to chelate to Zn to complete the five-coordina-
tion geometry.
(
1
1
Lippard, S. J. J. Am. Chem. Soc. 2001, 123, 7831. (c) Nolan, E. M.; Burdette,
S. C.; Harvey, J. H.; Hilderbrand, S. A.; Lippard, S. J. Inorg. Chem. 2004,
The H NMR spectra of 7-MOQ (Figure 2) indicate that
2+
6
upon coordination to Zn in DMSO-d the protons at the
4
3, 2624.
(
16) (a) Xue, L.; Wang, H.-H.; Wang, X.-J.; Jiang, H. Inorg. Chem.
ortho-position of pyridines shift downfield from 8.50 to 8.72
ppm. The proton at the 3-position of quinoline also shifts
downfield, suggesting the interaction between the fluorophore
2
008, 47, 4310. (b) Wang, H.-H.; Gan, Q.; Wang, X.-J.; Xue, L.; Jiang, H.
Org. Lett. 2007, 9, 4995. (c) Xue, L.; Liu, C.; Jiang, H. Org. Lett. 2009,
1
1, 1655.
2
+
(
17) (a) Sumalekshmy, S.; Henary, M. M.; Siegel, N.; Lawson, P. V.;
and Zn .
Wu, Y.; Schmidt, K.; Br e´ das, J.-L.; Perry, J. W.; Fahrni, C. J. J. Am. Chem.
Soc. 2007, 129, 11888. (b) Qian, F.; Zhang, C.; Zhang, Y.; H. W.; Gao,
X.; Hu, P.; Guo, Z. J. Am. Chem. Soc. 2009, 131, 1460.
The spectroscopic properties of 7-MOQ were measured
in aqueous buffer (25 mM HEPES, 0.1 M NaClO
4
, 5% v/v
Org. Lett., Vol. 11, No. 19, 2009
4427