Macromolecules
Article
mg, 57.6 μmol) in anhydrous DMF (20 mL) were stirred at 120 °C
overnight. The reaction was quenched by water and extracted with
ethyl acetate. The separated organic layer was washed with water and
ACKNOWLEDGMENTS
■
This work was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
2010-0002494) and the National Research Foundation of
Korea Grant funded by the Korean Government (MEST)
brine, then dried over MgSO and removed under reduced pressure.
4
The crude product was purified by column chromatography (silica gel,
3
0% ethyl acetate in hexane) to afford 0.5 g (64%) of 8 as light-yellow
(
1
solid. H NMR (600 MHz, CDCl ): δ (ppm) 8.58 (s, 2H), 7.97 (d,
3
2
H, J = 8.4 Hz), 7.33 (d, 2H, J = 8.4 Hz), 4.13 (d, 2H, J = 7.2 Hz),
(
(
2010-0019408), (2010-0026163), (2010-0026916), and
NRF-2009-C1AAA001-0093020).
13
1
.98 (m, 1H), 1.35−1.19 (m, 64H), 0.88 (t, 6H, J = 7.2 Hz). C NMR
(
150 MHz, CDCl ): δ (ppm) 143.64, 138.72, 131.02, 125.88, 116.21,
3
8
2
1
4.28, 32.08, 31.05, 29.99, 29.80, 29.71, 29.67, 29.51, 29.47, 25.18,
5.02, 22.84, 14.28. Anal. Calcd: C: 70.32, H: 9.71, B: 2.64, N: 1.71, O:
1.71, S: 3.91. Found: C: 70.52, H: 9.68, N: 1.88, S: 3.61, O: 11.62.
REFERENCES
■
+
•
(1) Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868.
2) Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107,
324.
3) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science
995, 270, 1789.
4) Kim, G.; Yun, M. H.; Anant, P.; Cho, S.; Jacob, J.; Kim, J. Y.;
Yang, C. Chem.Eur. J. 2011, 17, 14681.
5) Cheedarala, R. K.; Kim, G. H.; Cho, S.; Lee, J.; Kim, J.; Song, H.
K.; Kim, J. Y.; Yang, C. J. Mater. Chem. 2011, 21, 843.
(6) Wang, E. G.; Ma, Z. F.; Zhang, Z.; Vandewal, K.; Henriksson, P.;
Inganas, O.; Zhang, F. L.; Andersson, M. R. J. Am. Chem. Soc. 2011,
133, 14244.
MALDI−TOF−MS m/z: [M] = 819.53; calcd, 819.83.
(
Poly(N-(2-decyltetradecyl)-3,7-phenothiazine-alt-5,5-(4′,7′-
di-2-thienyl-2′,1′,3′-benzothiadiazole)) (PPTDTBT). In a Schlenk
flask, monomer 6 (0.21 g, 0.266 mmol) and 4,7-bis(5-bromothio-
phenyl)-2,1,3-benzothiadiazole (0.12 g, 0.266 mmol) was dissolved in
toluene (7 mL), to this a solution of K PO (286 mg, 1.34 mmol), trio-
1
(
1
(
3
4
tolylphosphine (10 mg, 0.03 mmol) and deionized water (1.5 mL) was
added. The mixture was vigorously stirred at room temperature under
argon. After 30 min, Pd (dba) (10 mg, 0.011 mmol)was added to the
reaction mixture and stirred at 90 °C for 3 days (end-capped with
phenylboronic acid and bromobenzene). Finally, the solution was
precipitated in a mixture of methanol and ammonia (4:1 v/v, 250 mL).
This was filtered off through 0.45 μm nylon filter, washed on Soxhlet
apparatus with methanol (1 d) and acetone (1 d). Then, 160 mg
(
2
3
(7) Price, S. C.; Stuart, A. C.; Yang, L. Q.; Zhou, H. X.; You, W. J.
Am. Chem. Soc. 2011, 133, 4625.
(
1
72%) of the polymer was recovered as a violet-powder (M = 9.8 ×
(8) Huo, L. J.; Zhang, S. Q.; Guo, X.; Xu, F.; Li, Y. F.; Hou, J. H.
Angew. Chem., Int. Ed. 2011, 50, 9697.
(9) Piliego, C.; Holcombe, T. W.; Douglas, J. D.; Woo, C. H.;
Beaujuge, P. M.; Frechet, J. M. J. J. Am. Chem. Soc. 2010, 132, 7595.
́
(10) Chen, H. Y.; Hou, J. H.; Zhang, S. Q.; Liang, Y. Y.; Yang, G. W.;
n
3
1
0 g/mol, PDI = 1.27). H NMR (600 MHz, CDCl ): δ (ppm) 8.11
3
(
br, 2H), 7.88 (br, 2H), 7.50 (br, 2H), 7.32 (br, 4H) 6.91 (br, 2H),
3
0
.79 (br, 2H), 2.04 (br, 1H), 1.8 (br, 6H), 1.42−1.24 (br, 40H), 0.87−
.84 (br, 6H).
Poly(N-(2-decyltetradecyl)-3,7-phenothiazine-S,S-dioxide-
Yang, Y.; Yu, L. P.; Wu, Y.; Li, G. Nat. Photonics 2009, 3, 649.
alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole))
(11) Zhao, G. J.; He, Y. J.; Li, Y. F. Adv. Mater. 2010, 22, 4355.
(PPTDTBT-SS). In a Schlenk flask, monomer 8 (0.214 g, 0.266 mmol)
(12) Cheng, Y. J.; Hsieh, C. H.; He, Y. J.; Hsu, C. S.; Li, Y. F. J. Am.
and 4,7-bis(5-bromothiophenyl)-2,1,3-benzothiadiazole (0.12 g, 0.266
mmol) was dissolved in toluene (7 mL), to this a solution of K PO4
Chem. Soc. 2010, 132, 17381.
13) He, Z.; Zhong, C.; Huang, X.; Wong, W.-Y.; Wu, H.; Chen, L.;
Su, S.; Car, Y. Adv. Mater. 2011, 23, 4636.
14) Jørgensen, M.; Norrman, K.; Krebs, F. C. Sol. Energy Mater. Sol.
Cells. 2008, 92, 686.
15) Sun, Y. M.; Seo, J. H.; Takacs, C. J.; Seifter, J.; Heeger, A. J. Adv.
Mater. 2011, 23, 1679.
16) Hau, S. K.; Yip, H.-L.; Leong, K.; Jen, A. K.-Y. Org. Electron.
009, 10, 719.
17) Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J.
3
(
(286 mg, 1.34 mmol), trio-tolylphosphine (10 mg, 0.03 mmol) and
deionized water (1.5 mL) was added. The mixture was vigorously
stirred at room temperature under argon. After 30 min, Pd (dba) (10
(
2
3
mg, 0.011 mmol) was added to the reaction mixture and stirred at 90
C for 3 days (end-capped with phenylboronic acid and
(
°
bromobenzene). Finally, the solution was precipitated in a mixture
of methanol and ammonia (4:1 v/v, 250 mL). This was filtered off
through 0.45 μm nylon filter, washed on Soxhlet apparatus with
(
2
(
methanol (1 d) and acetone (1 d). Then 0.14 g (61%) of the polymer
was recovered as a deep-red powder (M = 7.6 × 10 g/mol, PDI =
1
2
1
3
S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nat. Photonics 2009,
3, 297.
n
1
.21). H NMR (600 MHz, CDCl ): δ (ppm) 8.42 (br, 2H), 8.15 (br,
3
(18) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.;
H), 7.93 (br, 4H), 7.50−7.40 (br, 4H) 4.16 (br, 2H), 2.07 (br, 1H),
.27−1.23 (br, 40H), 0.90−0.85 (br, 6H).
Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. J.
Am. Chem. Soc. 2008, 130, 732.
(
19) Svensson, M.; Zhang, F. L.; Veenstra, S. C.; Verhees, W. J. H.;
Hummelen, J. C.; Kroon, J. M.; Inganas, O.; Andersson, M. R. Adv.
Mater. 2003, 15, 988.
20) Cho, S.; Seo, J. H.; Park, S. H.; Beaupre, S.; Leclerc, M.; Heeger,
A. J. Adv. Mater. 2010, 22, 1253.
21) Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle, R.
J. G. J. Chem. Soc. 1965, 4831.
22) Padhy, H.; Huang, J. H.; Sahu, D.; Patra, D.; Kekuda, D.; Chu,
ASSOCIATED CONTENT
■
̈
* Supporting Information
S
(
DFT-optimized geometries and charge-density isosurfaces for
the HOMO and LUMO levels of (a) (PTDTBT) and (b)
1
(
1
(
PTDTBT-SS)1 model, H NMR spectra of polymers,
polymers:PCBM blend transistors, solar cell performance of
(
61
C. W.; Lin, H. C. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 4823.
(23) Sang, G. Y.; Zou, Y. P.; Li, Y. F. J. Phys. Chem. C 2008, 112,
1
(
2058.
24) Liu, Y.; Cao, H.; Li, J.; Chen, Z.; Cao, S.; Xiao, L.; Xu, S.; Gong,
AUTHOR INFORMATION
■
*
+
Q. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 4867.
(25) Cho, N. S.; Park, J. H.; Lee, S. K.; Lee, J.; Shim, H. K.; Park, M.
J.; Hwang, D. H.; Jung, B. J. Macromolecules 2006, 39, 177.
82-52-217-2909.
(
26) Kong, X. X.; Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2003,
6, 8992.
27) Liu, B.; Najari, A.; Pan, C. Y.; Leclerc, M.; Xiao, D. Q.; Zou, Y.
P. Macromol. Rapid Commun. 2010, 31, 391.
3
(
Notes
The authors declare no competing financial interest.
1
856
dx.doi.org/10.1021/ma202661b | Macromolecules 2012, 45, 1847−1857