Journal of the American Chemical Society
Communication
acceptors or transition-metal catalyzed substitutions.24,25
Herein, we report a complementary way to access chiral
phosphine oxides. This study features the first enantioselective
hydrophosphinylation of dienes. Phosphine oxides and 1,3-
dienes can be coupled to furnish chiral allylic products in high
yields, regioselectivities, and enantioselectivities. Mechanistic
studies suggest that the coupling proceeds through a reversible
hydropalladation of the 1,3-diene partner, followed by
irreversible reductive elimination to afford chiral phosphine
oxide building blocks.
̈
(4) For select hydrofunctionalizations of dienes, see: (a) Lober, O.;
Kawatsura, M.; Hartwig, J. F. Palladium-Catalyzed Hydroamination of
1,3-Dienes: A Colorimetric Assay and Enantioselective Additions. J.
Am. Chem. Soc. 2001, 123, 4366−4367. (b) Page, J. P.; RajanBabu, T.
V. Asymmetric Hydrovinylation of 1-Vinylcycloalkenes. Reagent
Control of Regio- and Stereoselectivity. J. Am. Chem. Soc. 2012,
134, 6556−6559. (c) Zbieg, J. R.; Yamaguchi, E.; McInturff, E. L.;
Krische, M. J. Enantioselective C−H Crotylation of Primary Alcohols
via Hydrohydroxyalkylation of Butadiene. Science 2012, 336, 324−
327. (d) Park, B. Y.; Montgomery, T. P.; Garza, V. J.; Krische, M. J.
Ruthenium Catalyzed Hydrohydroxyalkylation of Isoprene with
Heteroaromatic Secondary Alcohols: Isolation and Reversible
Formation of the Putative Metallacycle Intermediate. J. Am. Chem.
Soc. 2013, 135, 16320−16323. (e) Chen, Q.-A.; Kim, D. K.; Dong, V.
M. Regioselective Hydroacylation of 1,3-Dienes by Cobalt Catalysis. J.
Am. Chem. Soc. 2014, 136, 3772−3775. (f) Saini, V.; O’Dair, M.;
Sigman, M. S. Synthesis of Highly Functionalized Tri- and
Tetrasubstituted Alkenes via Pd-Catalyzed 1,2-Hydrovinylation of
Terminal 1,3-Dienes. J. Am. Chem. Soc. 2015, 137, 608−611.
(g) Marcum, J. S.; Roberts, C. C.; Manan, R. S.; Cervarich, T. N.;
Meek, S. J. Chiral Pincer Carbodicarbene Ligands for Enantioselective
Rhodium-Catalyzed Hydroarylation of Terminal and Internal 1,3-
Dienes with Indoles. J. Am. Chem. Soc. 2017, 139, 15580−15583.
(h) Yang, X.-H.; Lu, A.; Dong, V. M. Intermolecular Hydroamination
of 1,3-Dienes To Generate Homoallylic Amines. J. Am. Chem. Soc.
2017, 139, 14049−14052. (i) Gui, Y.-Y.; Hu, N.; Chen, X.-W.; Liao,
L.-L.; Ju, T.; Ye, J.-H.; Zhang, Z.; Li, J.; Yu, D.-G. Highly Regio- and
Enantioselective Copper-Catalyzed Reductive Hydroxymethylation of
Styrenes and 1,3-Dienes with CO2. J. Am. Chem. Soc. 2017, 139,
17011−17014. (j) Adamson, N. J.; Hull, E.; Malcolmson, S. J.
Enantioselective Intermolecular Addition of Aliphatic Amines to
Acyclic Dienes with a Pd−PHOX Catalyst. J. Am. Chem. Soc. 2017,
139, 7180−7183. (k) Adamson, N. J.; Wilbur, K. C. E.; Malcolmson,
S. J. Enantioselective Intermolecular Pd-Catalyzed Hydroalkylation of
Acyclic 1,3-Dienes with Activated Pronucleophiles. J. Am. Chem. Soc.
2018, 140, 2761−2764. (l) Schmidt, V. A.; Kennedy, C. R.; Bezdek,
M. J.; Chirik, P. J. Selective [1,4]-Hydrovinylation of 1,3-Dienes with
Unactivated Olefins Enabled by Iron Diimine Catalysts. J. Am. Chem.
Soc. 2018, 140, 3443−3453. For reviews, see: (m) Hydrofunction-
alization. Topics in Organometallic Chemistry; Ananikov, V. P., Tanaka,
M., Eds.; Springer: Berlin, 2014; Vol. 343. (n) McNeill, E.; Ritter, T.
1,4-Functionalization of 1,3-Dienes With Low-Valent Iron Catalysts.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and spectral data for all new
Crystallographic data for 3an (CIF)
AUTHOR INFORMATION
Corresponding Author
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Funding provided by UC Irvine, the National Institutes of
Health (R35GM127071), and the National Science Founda-
tion (CHE-1465263). S.-Z.N. thanks Liaocheng University for
a scholarship. We thank Dr. Joseph Ziller and Austin Ryan for
X-ray crystallographic analysis and the Jarvo Lab for use of
their SFC.
REFERENCES
■
́
Acc. Chem. Res. 2015, 48, 2330−2343. (o) Bezzenine-Lafollee, S.; Gil,
(1) For selected reviews on 1,3-dienes as building blocks, see:
(a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis,
G. The Diels-Alder Reaction in Total Synthesis. Angew. Chem., Int. Ed.
2002, 41, 1668−1698. (b) Reymond, S.; Cossy, J. Copper-Catalyzed
Diels-Alder Reactions. Chem. Rev. 2008, 108, 5359−5406. (c) Chen,
J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Formal [4 + 1] Annulation
Reactions in the Synthesis of Carbocyclic and Heterocyclic Systems.
R.; Prim, D.; Hannedouche, J. First-Row Late Transition Metals for
Catalytic Alkene Hydrofunctionalisation: Recent Advances in C−N,
C−O, and C−P Bond Formation. Molecules 2017, 22, 1901−1929.
(5) Hirao, T.; Masunaga, T.; Yamada, N.; Ohshiro, Y.; Agawa, T.
Palladium-catalyzed New Carbon-Phosphorous Bond Formation. Bull.
Chem. Soc. Jpn. 1982, 55, 909−913.
(6) Mirzaei, F.; Han, L.-B.; Tanaka, M. Palladium-catalyzed
hydrophosphorylation of 1,3-dienes leading to allylphosphonates.
Tetrahedron Lett. 2001, 42, 297−299.
(7) Two additional examples have been reported for the coupling of
hydrophosphorous acid (H3PO2) and a 1,3-diene that yield allylic
phosphinic acids via Pd-catalyzed 1,4-addition; see: Bravo-Altamirano,
K.; Abrunhosa-Thomas, I.; Montchamp, J.-L. Palladium-Catalyzed
Reactions of Hypophosphorous Compounds with Allenes, Dienes,
and Allylic Electrophiles: Methodology for the Synthesis of Allylic H-
Phosphinates. J. Org. Chem. 2008, 73, 2292−2301.
(8) For select reviews of phosphines in catalysis, see: (a) Tolman, C.
A. Steric effects of phosphorus ligands in organometallic chemistry
and homogeneous catalysis. Chem. Rev. 1977, 77, 313−348. (b) van
Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P.
Ligand Bite Angle Effects in Metal-catalyzed C−C Bond Formation.
Chem. Rev. 2000, 100, 2741−2770. (c) Noyori, R.; Ohkuma, T.
Asymmetric Catalysis by Architectural and Functional Molecular
Engineering: Practical Chemo- and Stereoselective Hydrogenation of
Ketones. Angew. Chem., Int. Ed. 2001, 40, 40−73. (d) Xiao, Y.; Guo,
H.; Kwon, O. Nucleophilic Chiral Phosphines: Powerful and Versatile
Chem. Rev. 2015, 115, 5301−5365. (d) Buschleb, M.; Dorich, S.;
̈
Hanessian, S.; Tao, D.; Schenthal, K. B.; Overman, L. E. Synthetic
Strategies toward Natural Products Containing Contiguous Stereo-
genic Quaternary Carbon Atoms. Angew. Chem., Int. Ed. 2016, 55,
4156−4186.
(2) For reviews on polymerization of 1,3-dienes, see: (a) Monakov,
Y. B.; Mullagaliev, I. R. Ionic and coordination diene polymerization
and organic derivatives of main group metals. Russ. Chem. Bull. 2004,
53, 1−9. (b) Friebe, L.; Nuyken, O.; Obrecht, W. Neodymium Based
Ziegler/Natta Catalysts and their Application in Diene Polymer-
ization. Adv. Polym. Sci. 2006, 204, 1−154. (c) Zhang, Z.; Cui, D.;
Wang, B.; Liu, B.; Yang, Y. Polymerization of 1,3-Conjugated Dienes
with Rare-Earth Metal Precursors. Struct. Bonding (Berlin, Ger.) 2010,
137, 49−108. (d) Valente, A.; Mortreux, A.; Visseaux, M.; Zinck, P.
Coordinative Chain Transfer Polymerization. Chem. Rev. 2013, 113,
3836−3857. (e) Takeuchi, D. Stereoselective Polymerization of
Conjugated Dienes. Encyclopedia of Polymer Science and Technology;
Wiley: New York, 2013; pp 1−25.
(3) Trost, B. M. The atom economya search for synthetic
efficiency. Science 1991, 254, 1471−1477.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX