Take
a
step further, we attempted to study the
concentration-dependent inhibition of bacterial growth. Various
concentrations of 1 in the absence and presence of H2S were
added into the culture medium. After incubation at 37 ºC for
another 12 h, the OD600 of the medium was measured for each
sample (Fig. 5). As expected, the prodrug 1 at low concentration
showed weak inhibition effect on the bacterial growth, while the
addition of H2S or L-Cys significantly increased the inhibition
effect of 1. However, the prodrug could also inhibit bacterial
growth at high concentrations (> 0.2 μM), which may be
explained by the inhibitory mechanism of ciprofloxacin. Firstly,
the X-ray crystallography of ciprofloxacin in complex with DNA
gyrase18 showed that piperazinyl ring of ciprofloxacin protruding
toward the protein surface had little interaction with its target
protein. Secondly, the substituted piperazinyl ring of drug
variants19 (levofloxacin, gatifloxacin, moxifloxacin and
C8-Me-moxifloxacin) were all effective antibiotics. Therefore,
the inhibitory activity of prodrug 1 was reduced rather than
completely lost. The MIC of the combination of prodrug 1 and
H2S (50 μM Na2S or 5 mM L-Cys) was about 30 nM, and in this
condition E. coli cell were almost killed (Fig. 5) within 12 hours.
The NBD moiety even at micromolar concentrations did not have
obvious effect on bacterial growth.
Acknowledgments
This work was supported by the National Key R&D Program
of China (2017YFD0200500, 16JCYBJC20200), NSFC
(21572190, 21877008).
References and notes
1
2
(a) R. Wang , Physiol. Rev., 2012, 92, 791; O. Kabil and R. Banerjee,
Antioxid. Redox Signal., 2014, 20, 770; (b) G. K. Kolluru, X. G. Shen, S.
C. Bir and C. G. Kevil, Nitric Oxide, 2013, 35, 5.
(a) L. Li, P. Rose and P. K. Moore, Annu. Rev. Pharmacol. Toxicol.,
2011, 51, 169; (b) H. Kimura, Amino Acids, 2011, 41, 113; (c) L. Wei,
L. Yi, F. B. Song, C. Wei, B. F. Wang and Z. Xi, Sci. Rep., 2014, 4,
4521.
3
4
(a) Y. H. Liu, M. Lu, L. F. Hu, P. T. Wong, G. D. Webb and J. S. Bian,
Antioxid. Redox Signal., 2012, 17, 141; (b) L. Yi, L. Wei, R. Y. Wang,
C. Y. Zhang, J. Zhang, T. W. Tan and Z. Xi, Chem. Eur. J., 2015, 21,
15167.
(a) A. Papapetropoulos, A. Pyriochou, Z. Altaany, G. D. Yang, A.
Marazioti, Z. M. Zhou, M. G. Jeschke, L. K. Branski, D. N. Herndon, R.
Wang and C. Szabó, Proc. Natl. Acad. Sci. USA, 2009, 106, 21972; (b)
C. Coletta, K. Módis, B. Szczesny, A. Brunyánszki, G. Oláh, E. CS
Rios, K. Yanagi, A. Ahmad, A. Papapetropoulos and C. Szabo, Mol.
Med., 2015, 21, 1.
5
6
7
K. Módis, Y. J. Ju, A. Ahmad, A. A. Untereiner, Z. Altaany, L. Y. Wu,
C. Szabó and R. Wang, Pharmacol. Res., 2016, 113, 116.
Y. K. Zhai, S. C. Tyagi, N. Tyagi, Biomed. Pharmacother., 2017, 92,
1073.
(a) C. Szabo, Nat. Rev. Drug Disc., 2016, 15, 185; (b) D. D. Wu, W. R.
Si, M. J. Wang, S. Y. Lv and A. L. Ji, Nitric Oxide, 2015, 50, 38; (c) M.
R. Hellmich, C. Coletta, C. Chao and C. Szabo, Antioxid. Redox Signal.,
2015, 22, 424; (d) J. Breza Jr, A. Soltysova, S. Hudecova, A. Penesova,
I. Szadvari, P. Babula, B. Chovancova, L. Lencesova, O. Pos, J. Breza,
K. Ondrias and O. Krizanova, BMC Cancer, 2018, 18, 591; (e) R. Wang,
Q. L. Fan, J. J. Zhang, X. N. Zhang, Y. Q. Kang and Z. R. Wang, Transl.
Oncol., 2018, 11, 900.
8
9
(a) J. T. Hancock and M. Whiteman, Plant Physiol. Biochem., 2014, 78,
37; (b) A. Calderwood and S. Kopriva, Nitric Oxide, 2014, 41, 72; (c)
Z.-G. Li, X. Min and Z.-H. Zhou, Front. Plant Sci., 2016, 7, 1621; (d) H.
M. Guo, T. Y. Xiao, H. Zhou, Y. J. Xie and W. B. Shen, Acta Physiol.
Plant, 2016, 38, 16;
(a) C. Álvarez, I. García, I. Moreno, M. E. Pérez, J. L. Crespo, L. C.
Romero and C. Gotor, Plant Cell, 2012, 24, 4621; (b) A. M.
Laureano-Marín, I. Moreno, L. C. Romero and C. Gotor, Plant Physiol.,
2016, 171, 1378.
10 P. Shukla, V. S. Khodade, M. S. Chandra, P. Chauhan, S. Mishra, S.
Siddaramappa, B. E. Pradeep, A. Singh and H. Chakrapani, Chem. Sci.,
2017, 8, 4967
11 (a) P. Gao, W. Pan, N. Li and B. Tang, Chem. Sci., 2019, 10, 6035; (b) R.
C. Wang, K. K. Dong, G. Xu, B. Shi, T. l. Zhu, P. Shi, Z. Q. Guo, W. H.
Zhu and C. C. Zhao, Chem. Sci., 2019, 10, 2785; (c) C. F. Wang, X. X.
Cheng, J. Y. Tan, Z. Y. Ding, W. J. Wang, D. Q. Yuan, G. Li, H. J.
Zhang and X. J. Zhang, Chem. Sci., 2018, 9, 8369; (d) F. Yang, H. Gao,
S. S. Li, R. B. An, X. Y. Sun, B. Kang, J. J. Xu and H. Y. Chen, Chem.
Sci., 2018, 9, 5556; (e) L. W. He, X. L. Yang, K. X. Xu, X. Q. Kong
and W. Y. Lin, Chem. Sci., 2017, 8, 6257; (f) B. Shi, X. F. Gu, Q. Fei
and C. C. Zhao, Chem. Sci., 2017, 8, 2150.
Fig. 5 (a) Concentration-dependent OD600 values of E. coli in the
different cultured conditions as indicated inset. Experimental
conditions: 30 nM prodrug 1, 50 μM Na2S, or 5 mM L-Cys were
added into the LB medium. (b) Photos of bacterial growth inhibition
for each culture plate.
12 (a) C. Wei, L. Wei, Z. Xi and L. Yi, Tetrahedron Lett., 2013, 54, 6937;
(b) L. A. Montoya, T. F. Pearce, R. J. Hansen, L. N. Zakharov and M. D.
Pluth, J. Org. Chem., 2013, 78, 6550.
13 (a) C. Y. Zhang, L. Wei, C. Wei, J. Zhang, R. Y. Wang, Z. Xi and L. Yi,
Chem. Commun., 2015, 51, 7505; (b) J. Zhang, R. Y. Wang, Z. T. Zhu,
L. Yi and Z. Xi, Tetrahedron, 2015, 71, 8572; (c) F. B. Song, Z. F. Li, J.
Y. Li, S. Wu, X. B. Qiu, Z. Xi and L. Yi, Org. Biomol. Chem., 2016, 14,
11117; (d) R. Y. Wang, Z. F. Li, C. Y. Zhang, Y. Y. Li, G. C. Xu, Q. Z.
Zhang, L. Y. Li, L. Yi and Z. Xi, ChemBioChem, 2016, 17, 962; (e) C.
Wei, R. Y. Wang, C. Y. Zhang, G. C. Xu, Y. Y. Li, Q. Z. Zhang, L. Y.
Li, L. Yi and Z. Xi, Chem.-Asian J., 2016, 11, 1376; (f) C. Y. Zhang, R.
Y. Wang, L. H. Cheng, B. J. Li, Z. Xi and L. Yi, Sci. Rep., 2016, 6,
30148; (g) K. Zhang, J. Zhang, Z. Xi, L.-Y. Li, X. X. Gu, Q.-Z. Zhang
and L. Yi, Chem. Sci., 2017, 8, 2776; (h) I. Ismail, D. W. Wang, Z. H.
In conclusion, we have designed and synthesized the first
H2S-triggered prodrug based on thiolysis of the NBD amine. The
prodrug can be used for localized production of ciprofloxacin in
the presence of micromolar H2S. Activation of the prodrug can be
indicated via significant turn-on (62-fold) fluorescence in
real-time. We also envision that thiolysis of NBD amine could be
generally used for development of other H2S-triggered prodrugs,
including that for sparfloxacin, grepafloxacin, pipemidic acid,
and pethidine.