IRIDIUM-CATALYZED SYNTHESIS OF QUINOLINES
379
1
Commun., 2006, p. 583.
5,6-Dihydrobenzo[c]acridine (4h). H NMR spec-
trum (400 MHz, CDCl3), δ, ppm: 8.49 d (1H, J =
7.8 Hz), 8.04 d (1H, J = 8.0 Hz), 7.78 s (1H), 7.62 d
(1H, J = 7.8 Hz), 7.54 t (1H, J = 8.1 Hz), 7.39–7.24 m
(3H), 7.19–7.14 m (1H), 3.03–2.94 m (2H), 2.93–2.85
m (2H).
5. Yamashkin, S.A. and Oreshkina, E.A., J. Heterocycl.
Chem., 2006, vol. 42, p. 701.
6. Taguchi, K., Sakaguchi, S., and Ishii, Y., Tetrahedron
Lett., 2005, vol. 46, p. 4539.
7. Cho, C.S., Ren, W.X., and Shim, S.C., Tetrahedron
Lett., 2006, vol. 47, p. 6781.
8. Lin, Y., Wu J., Shen, Y., and Zhan, X., J. Food Sci.
Biotechnol., 2012, vol. 31, p. 211.
1
6,7-Dimethoxy-2-phenylquinoline (4i). H NMR
spectrum (400 MHz, CDCl3), δ, ppm: 8.03 d (2H, J =
8.0 Hz), 7.90 d (1H, J = 7.8 Hz), 7.61 d (1H, J =
7.9 Hz), 7.41 t (3H, J = 7.8 Hz), 7.33 t (1H, J = 7.8 Hz,
6.93 s (1H), 3.96 s (3H), 3.91 s (3H).
9. Sun, T., Hu, D., Chen, C., Jiang, Z., and Xie, J., J. Food
Sci. Biotechnol., 2012, vol. 11, p. 1198.
10. Cho, C.C., Kim, B.T., Choi, H.-J., Kim, T.-J., and
Shim, S.C., Tetrahedron, 2003, vol. 59, p. 7997.
11. Colby, D.A., Bergman, R.G., and Ellman, J.A., Chem.
Rev., 2010, vol. 110, p. 624.
12. Mkhalid, I.A.I., Barnard, J.H., Marder, T.B., Murphy, J.M.,
and Hartwig, J.F., Chem. Rev., 2010, vol. 110, p. 890.
13. Beletskaya, I.P. and Ananikov, V.P., Chem. Rev., 2011,
CONCLUSIONS
In conclusion, an efficient method for synthesizing
quinolines from 2-aminobenzyl alcohols and
secondary alcohols was developed. The reaction
proceeds actively in the presence of the system Ir(III)–
CNP complex/AgNTf2 with moderate to good yield.
This methodology provides alternative method to
prepare quinoline derivatives.
vol. 111, p. 1596.
14. Li, B.J. and Shi, Z.J., Chem. Soc. Rev., 2012, vol. 41,
p. 5588.
15. Gulevich, A.V., Dudnik, A.S., Chernyak, N., and Ge-
ACKNOWLEDGMENTS
vorgyan, V., Chem. Rev., 2013, vol. 113, p. 3084.
16. Martínez, R., Ramón, D. J., and Yus, M., Tetrahedron,
2003, vol. 62, p. 8982.
17. Martínez, R., Ramón, D. J., and Yus, M., J. Org. Chem.,
2008, vol. 73, p. 9778.
18. Srimani, D., Ben-David, Y., and Milstein, D., Chem.
Commun., 2013, vol. 49, p. 6632.
The study was financially supported by the National
Natural Science Foundation of China (project 21307042),
the Natural Science Foundation of Jiangsu Province
(project no. BK20130124), and by the China Postdoctoral
Science Foundation (project no. 2014M550262).
19. Ruch, S., Irrgang, T., and Kempe, R., Chem. Eur. J.,
REFERENCES
2014, vol. 20, p. 13279.
20. Wang, D., Zhao, K., Yu, X., Miao, H., and Ding, Y.,
1. Doyle, M. E., and Egan, J. M., Pharmacol. Rev., 2003,
vol. 55, p.105.
RSC Adv., 2014, vol. 4, p. 42924.
21. Wang, D., Ge, B., Li, L., Shan, J., and Ding, Y., J. Org.
Chem., 2014, vol. 79, p. 8607.
2. Benigni, R., Chem. Rev., 2005, vol. 105, p. 1767.
3. Michael, J.P., Nat. Prod. Rep., 2005, vol. 22, p. 627.
4. Ila, H., Baron, O., Wagner, A.J., and Knochel, P., Chem.
22. Wang, D., Zhao, K., Xu, C., Miao, H., and Ding, Y.,
ACS Catal., 2014, vol. 4, p. 3910.
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 86 No. 2 2016