Please do not adjust margins
Page 5 of 6
Green Chemistry
Journal Name
COMMUNICATION
127.82, 129.03, 129.43, 130.58, 132.36, 135.25, 142.72. MS: C16H18:
210 (M+, 100%), 195 (100%), 181 (31%), 165 (37%).
6
Synth. Catal., 2017, 359, 1522; V. GauchDotO,ID: 1.0R.1.0S3u9t/hCe7rGlaCn0d2,8a0n4Kd
A.-L. Lee, Chem. Science, 2017, 8, 2885; T. Cornilleau, P.
Hermange, and E. Fouquet, Chem. Commun. 2016, 52, 10040; S.
H. Gund, K. E. Balsane, and J. M. Nagarkar, Tet. Lett. 2017, 58,
2936; K. Cheng, B. Zhao, S. Hu, X.-M. Zhang, and C. Qi, Tet. Lett.,
2013, 54, 6211; A. Zarei, L. Khazdooz, A. R. Hajipour, F. Rafiee,
G. Azizi, and F. Abrishami, Tet. Lett., 2012, 53, 406.
L. Wang, X. Pan, F. Wang, L. Yang and L. Liu, Dyes and Pigments,
2008, 76, 636.
K. V. Kutonova, M. E. Trusova, P. S. Postnikov, V. D. Filimonov,
and J. Parello, Synthesis, 2013, 2706.
1
4'-ethyl-2,4-dimethylbiphenyl (Table 3, entry 12): H NMR (CDCl3,
400 MHz): δ(ppm) = 1.29 (t, J= 4.0 Hz, 3H), 2.26 (s, 3H), 2.36 (s, 3H),
2.67-2.72 (m, 2H), 7.05 (d, J=8.0 Hz, 2H), 7.27-7.35 (m, 3H), 7.52 (d,
J= 8.0 Hz, 2H). 13C NMR (CDCl3, 100 MHz) δ(ppm) = 15.71, 21.07,
21.28, 28.68, 126.8, 127.21, 128.34, 129.52, 131.38, 135.34, 136.41,
139.16, 141.37, 142.62. MS: C16H18: 210(M+, 100%); 181(67%),
165(37%).
7
8
9
4-ethyl-4'-methylbiphenyl (Table 3, entry 13): 1H NMR (CDCl3, 400
MHz): δ(ppm) = 1.27-1.31 (m, 3H), 2.28 (s, 3H), 2.68-2.74 (m, 2H),
7.20-7.25 (m, 4H), 7.46-7.51 (m, 4H). 13C NMR (CDCl3, 100 MHz)
δ(ppm) = 15.63, 20.71, 28.72, 126.80, 126.84, 128.24, 129.35,
135.93, 136.60, 138.32, 139.31, 142.98. MS: C15H16: 196(M+, 100%);
195(60%), 165(37%).
H. A. Benesi and B. H. C. Winquest, Adv. Catal., 1978, 27, 97.
10 F. Gómez-Sanz, M. V. Morales-Vargas, B.González-Rodríguez, M.
L. Rojas-Cervantes, and E. Pérez-Mayoral, Applied Clay Sci.,
2017, 143, 250.
4-bromo-4'-methylbiphenyl (Table 3, entry 14): 1H NMR (CDCl3,
400 MHz): δ(ppm) = 2.26 (s, 3H), 7.27 (d, J= 8.0 Hz, 2H), 7.40-7.52
(m, 4H), 7.75 (d, J= 8.0 Hz, 2H). 13C NMR (CDCl3, 100 MHz): δ(ppm) =
21.20, 122.43, 126.91, 128.67, 129.73, 131.90, 137.23, 137.67,
140.27. MS: C13H11Br: 246(M+, 100%); 248(100%); 168(81%),
165(37%).
11 M. Chakrabarty, , A. Mukherji, S. Arima, , Y. Harigaya, and G.
Pilet, Monat. Chem., 2009, 140, 189.
12 R. S. Varma, Tetrahedron, 2002, 58, 1235; V. Polshettiwar and R.
S. Varma, Acc. Chem. Res., 2008, 41, 629; V. Polshettiwar and R.
S. Varma, Chem. Soc. Rev., 2008, 37, 1546.
13 S. Dasgupta and B. Török, Org. Prep. Proced. Int., 2008, 40, 1;
Dasgupta and B. Török, Curr. Org. Synth., 2008, 5, 321.
14 J. Safari, M. Ahmadzadeh and Z. Zarnegar, Catal. Commun.
2016, 86, 91.
15 R. S. Varma, Green Chem. Lett. Rev., 2007, 1, 37; V. Polshettiwar
and R. S. Varma, Pure Appl. Chem., 2008, 80, 777.
16 H. Kolancilar, Asian J. Chem., 2010, 22, 5694.
17 J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, and M. Lemaire,
Chem. Rev., 2002, 102, 1359; J.-P. Corbet, G. Mignani, Chem.
Rev., 2006, 106, 2651; M. C. Kozlowski, B. J. Morgan, and E. C.
Linton, Chem. Soc. Rev., 2009, 38, 3193; P. J. Hajduk, M. Bures, J.
Praestgaard, S. W. Fesik, J. Med. Chem., 2000, 43, 3443.
18 M. Gomberg, and W. E. Bachmann, J. Am. Chem. Soc., 1924, 46,
2339.
3,4-dichlorobiphenyl (major product, Table 3, entry 15): 1H NMR
(CDCl3, 400 MHz): δ (ppm) = 7.23 (s, 1H), 7.25 (d, J=8.0 Hz, 1H),
7.41-7.48 (m, 6H). 13C NMR (CDCl3, 100 MHz): δ (ppm) = 127.26,
128.27, 129.41, 129.62, 130.82, 133.72, 139.44, 141.40, MS:
C12H8Cl2: 222 (M+, 100%), 152 (50%)
4-bromobiphenyl (major product, Table 3, entry 16): 1H NMR
(CDCl3, 400 MHz): δ (ppm) = 7.34-7.38 (m, 1H), 7.41- 7.49 (m, 2H),
7.60-7.69 (m, 6H). 13C NMR (CDCl3, 100 MHz): δ (ppm) = 121.63,
126.92, 127.68, 128.73, 128.82, 131.93, 140.15, 140.32. MS:
C12H9Br: 232(M+, 100%), 234(M+2, 100%), 152(98%).
3-nitrobiphenyl (major product, Table 3, entry 17): 1H NMR (CDCl3,
400 MHz): δ (ppm) = 7.41-7.52 (m, 3H), 7.61-7.64 (m, 3H), 7.85-7.89
(m, 2H), 8.34-8.37 (m, 1H). 13C NMR (CDCl3, 100 MHz): δ (ppm) =
122.53, 127.49, 129.0, 129.97, 133.55, 136.62, 137.53, 148.91. MS:
C12H9NO2 : 199 (M+, 100%), 168(30%), 152(95%).
19 R. Pschorr, Chem. Ber., 1896, 29, 496.
20 F. Ullmann, and J. Bielecki, Chem. Ber., 1901, 34, 2174.
21 M. S. Kharasch and E. K. Fields, J. Am. Chem. Soc., 1941, 63,
2316.
Notes and references
22 Á. Molnár, (ed.) Palladium-catalyzed coupling reactions. Wiley-
VCH, Weinheim, 2013.
1
M. B. Smith and J. March, March’s Advanced Organic Chemistry,
Wiley, Hoboken, NJ, 6th edn, 2007, p. 917; L. Huang, D.
Hackenberger and L. J. Goossen, Angew. Chem., Int. Ed., 2015,
54, 12607; M. E. Trusova, K. V. Kutonova, V. V. Kurtukov, V. D.
Filimonov, and P. S. Postnikov, Resource-Efficient Technologies
2, 2016, 1, 36.
23 K. W. Quasdorf, A. A-Finch, P.Liu, A. L. Silberstein, A. Komaromi,
T. Blackburn, S. D. Ramgren, K. N. Houk, V. Snieckus and N. K.
Garg, J. Am. Chem. Soc. 2011, 133, 6352 ; L. Xi, B.-J. Li, Z.-H. Wu,
X.-Y. Lu, B.-T. Guan, B.-Q. Wang, K.-Q. Zhao, and Z.-J. Shi, Org.
Lett. 2010, 12, 884.
24 S. D. Ramgren, A. L. Silberstein, Y. Yang, and N. K. Garg, Angew.
Chem. Int. Ed. 2011, 50, 217; T. K. Macklin, V. Snieckus, Org.
Lett. 2005, 7, 2519.
2
3
4
5
B. Basu, K. Biswas, S. Kundu, and S. Ghosh, Green Chem., 2010,
12, 1734.
T. Chatterjee, S. Bhadra, and B. C. Ranu, Green Chem., 2011, 13,
1837.
S. Cacchi, E. Caponetti, M.A. Casadei, A. Di Giulio, G. Fabrizi, and
G. Forte, Green Chem., 2012, 14, 317.
A. Roglans, A. P-Quintana, and M. Moreno-Mañas, Chem. Rev.,
2006, 106, 4622; J. Hofmann and M. R. Heinrich, Tet. Lett., 2016,
57, 4334; F. Mo, G. Dong, Y. Zhang, and J. Wang, Org. Biomol.
Chem., 2013, 11, 1582; H.H. Hodgson, Chem. Rev., 1947, 40,
251.; C. Galli, Chem. Rev. 1988, 88, 765-792.
25 J. Clayden, J. J. A Cooney, and M. Julia, J. Chem. Soc., Perkin
Trans. 1, 1995, 7.
26 L. Zhang, Y. Luo, and J. Wu, Synlett, 2010, 12, 1845.
27 J. A. Ashenhurst, Chem. Soc. Rev., 2010, 39, 540; C. S. Yeung,
and V. M. Dong, Chem. Rev., 2011, 111, 1215; N. Kuhl, M. N.
Hopkinson, J. Wencel-Delord, and F. Glorius, Angew. Chem., Int.
Ed., 2012, 51, 10236.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins