Mechanism of Acylation of Lithium
Phenylacetylide with a Weinreb Amide
monomer-based mechanism. A pronounced autoinhibition is
traced to a mixed tetramer composed of intermediate 2 with
4
lithium phenylacetylide (PhCCLi).
Bo Qu and David B. Collum*
Contribution from the Department of Chemistry and Chemical
Biology, Baker Laboratory, Cornell UniVersity,
Ithaca, New York 14853-1301
Monitoring the addition of PhCCLi to Weinreb amide 1 using
in situ IR spectroscopy provides qualitative insights. Amide
5
ReceiVed June 14, 2006
6
1
does not appreciably complex PhCCLi in all THF/pentane
mixtures studied, as evidenced by the absence of a shift in the
carbonyl absorbance. Reaction of 1.0 equiv of PhCCLi with 1
at -50 °C stalls at 50% conversion. The absence of a new
carbonyl absorbance is consistent with a stable tetrahedral
intermediate. Warming to 20 °C results in the slow consumption
of the starting carboxamide. In contrast, g2.0 equiv of PhCCLi
in 3.0 M THF/pentane causes complete consumption of 1 at
Additions of lithium phenylacetylide to a Weinreb amide
are described. Dimeric lithium acetylide reacts via a mono-
solvated monomer-based transition structure. The robust
-
50 °C within 1.0 h, affording ketone 3 in 90-95% yield.
-1
Under no conditions is ketone 3 (1671 cm ) detectable in the
IR spectrum before quenching, nor is the tertiary alcohol
resulting from double addition detected after quenching.
The source of the apparent autoinhibition was ascertained
1
tetrahedral intermediate forms sequentially a C 2:2 mixed
tetramer with the excess lithium acetylide and a 1:3 (alkox-
ide-rich) mixed tetramer. The stabilities of the mixed
tetramers are consistent with a pronounced autoinhibition.
6
13
using Li and C NMR spectroscopy. Broadband-decoupled
6
6
13
Li NMR spectra recorded on mixtures of 1 and excess [ Li, C]-
7
PhCCLi reveal the resonances corresponding to dimeric
6
13
7,8
[
Li, C]PhCCLi (4) along with four new resonances in a 1:1:
Acylations of organolithiums and organomagnesium reagents
13
1
:1 ratio (Figure 1). C NMR spectra reveal the resonance of
1
to form ketones is of central importance in organic synthesis.
4
along with two new complex multiplets (1:1) corresponding
Among the many acylating reagents, the so-called Weinreb
to the labeled C1 of the PhCCLi fragments. Deconvolution of
2
amides (1) have moved to center stage. Although it seems likely
6
13
1
6
13
the complex Li- C coupling using J( Li, C)-resolved NMR
that the methoxy moiety facilitates the nucleophilic attack both
inductively and through chelation, the mechanism of acylation
is largely unknown. Suggestions that putative tetrahedral
8
spectroscopy (Figure 1) aided by single-frequency decouplings
revealed Li-C connectivities consistent with the 2:2 mixed
tetramer 5 with C1 symmetry (Supporting Information).
1
,3
intermediate (2) are supported by limited indirect evidence.
We show herein that the acylation in eq 1 proceeds via a
(
1) For excellent leading references to acylations in synthesis and a
detailed discussion of putative tetrahedral intermediates in acylation reactions
including a discussion of addition to Weinreb amides), see: Adler, M.;
Adler, S.; Boche, G. J. Phys. Org. Chem. 2005, 18, 193.
2) (a) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815. (b)
Review: Singh, J.; Satyamurthi, N.; Aidhen, I. S. J. Prakt. Chem. 2000,
42, 340. (c) For representative acylations of lithium acetylides using
(
(
3
Weinreb amides, see: Bagley, M. C.; Chapaneri, K.; Dale, J. W.; Xiong,
X.; Bower, J. J. Org. Chem. 2005, 70, 1389; Shin, Y.; Fournier, J.-H.; Fukui,
Y.; Br u¨ ckner, A. M.; Curran, D. P. Angew. Chem., Int. Ed. 2004, 43, 4634;
Masi, S.; Top, S.; Boubekeur, L.; Jaouen, G.; Mundwiler, S.; Spingler, B.;
Alberto, R. Eur. J. Inorg. Chem. 2004, 2013; Schwartz, B. D.; Hayes, P.
Y.; Kitching, W.; De Voss, J. J. J. Org. Chem. 2005, 70, 3054.
(
3) Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc. 1988,
1
10, 2506; Jeong, I. H.; Jeon, S. L.; Min, Y. K.; Kim, B. T. Tetrahedron
Lett. 2002, 43, 7171; Jeong, I. H.; Jeon, S. L.; Kim, M. S.; Kim, B. T. J.
Fluorine Chem. 2004, 125, 1629; Sibi, M. P.; Marvin, M.; Sharma, R. J.
Org. Chem. 1995, 60, 5016; Jackson, M. M.; Levett, C.; Toczko, J. F.;
Roberts, J. C. J. Org. Chem. 2002, 67, 5032.
(5) Rein, A. J.; Donahue, S. M.; Pavlosky, M. A. Curr. Opin. Drug
DiscoV. DeV. 2000, 3, 734.
(4) (a) Thompson, A.; Corley, E. G.; Huntington, M. F.; Grabowski, E.
J. J.; Remenar, J. F.; Collum, D. B. J. Am. Chem. Soc. 1998, 120, 2028. (b)
Gossage, R. A.; Jastrzebski, J. T. B. H.; van Koten, G. Angew. Chem., Int.
Ed. 2005, 44, 1448. (c) Tchoubar, B.; Loupy, A. Salt Effects in Organic
and Organometallic Chemistry; VCH: New York, 1992; Chapters 4, 5,
and 7. (d) Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624. (e)
Wang, Q.; Deredas, D.; Huynh, C.; Schlosser, M. Chem.-Eur. J. 2003, 9,
(6) The absorbance of 1 is solvent dependent in the absence of lithium
-
1
-1
salts, varying from 1681 cm in neat pentane to 1663 cm in neat THF.
(7) (a) Fraenkel, G.; Stier, M. Prepr. Pap.-Am. Chem. Soc., DiV. Fuel
Chem. 1985, 30, 586. (b) Jackman, L. M.; Scarmoutzos, L. M.; DeBrosse,
C. W. J. Am. Chem. Soc. 1987, 109, 5355.
(8) Briggs, T. F.; Winemiller, M. D.; Collum, D. B.; Parsons, R. L., Jr.;
Davulcu, A. K.; Harris, G. D.; Fortunak, J. D.; Confalone, P. N. J. Am.
Chem. Soc. 2004, 126, 6291.
5
70. (f) Hsieh, H. L.; Quirk, R. P. Anionic Polymerization: Principles and
Practical Applications; Marcel Dekker: New York, 1996.
1
0.1021/jo061223w CCC: $33.50 © 2006 American Chemical Society
Published on Web 08/02/2006
J. Org. Chem. 2006, 71, 7117-7119
7117