10.1002/asia.201801745
Chemistry - An Asian Journal
FULL PAPER
monitored by thin-layer chromatography (TLC). After completion of the
reaction, 20 mL ethyl acetate was added to the reaction mixture and the
catalyst was separated by centrifuge. Then, in the reaction mixture 20 mL
3 N HCl and 20 mL ethyl acetate was added under vigorous stirring for 15
min and kept untouched for another 10 min. The resultant organic layer
was separated and the aqueous layer was again treated with ethyl acetate
(20 mL) and the process was repeated for another 3 times. The combined
extracted ethyl acetate was dried over anhydrous MgSO4, and further
concentrated to obtain the tetrazole products. All products were
characterized by 1H and 13C NMR, FT-IR analysis, which were in
agreement with literature reports. The separated catalyst was washed with
acetone and ethyl acetate and re-used.
[9]
A. K. Giri, A. Saha, A. Mondal, S. C. Ghosh, S. Kundu, A. B. Panda, RSC
Adv., 2015, 5, 102134-102142.
[10] A. Sinhamahapatra, A. K. Giri, P. Pal, S. K. Pahari, H. C. Bajaj, A. B.
Panda, J. Mater. Chem., 2012, 22, 17227-17235.
[11] a) B. V. Kumar, H. S. B. Naik, D. K. Girija, J. Chem. Sci., 2011, 123, 615-
621; b) M. Hosseini-Sarvari, H. Sharghi, J. Org. Chem., 2006, 71, 6652-
6654; c) A. Nagvenkar, S. Naik, J. Fernandes, Catal. Commun., 2015,
65, 20-23; d) R. Tayebee, A. H. Nasr, S. Rabiee, E. Adibi, Ind. Eng.
Chem. Res., 2013, 52, 9538-9543.
[12] a) C. B. Ong, L. Y. Ng, A. W. Mohammad, Renew. Sustain. Energy Rev.,
2018, 81, 536-551; b) K. M. Lee, C. W. Lai, K. S. Ngai, J. C. Juan, Water
Res., 2016, 88, 428-448; c) S. B. A. Hamid, S. J. Teh, C. W. Lai,
Catalysts 2017, 7, 93-106.
[13] a) Y. Sun, L. Chen, Y. Bao, Y. Zhang, J. Wang, M. Fu, J. Wu, D. Ye,
Catalysts 2016, 6, 188; b) Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng,
K. Wei, J. Zhu, Y. Zhu, Inorg. Chem., 2007, 46, 6675-6682; c) N.
Talebian, S. M. Amininezhad, M. Doudi, J. Photochem. Photobiol. B.
Biology 2013, 120, 66-73; d) E. P. Babu, A. Subastri, A. Suyavaran, K.
Premkumar, V. Sujatha, B. Aristatile, G. M. Alshammari, V. Dharuman,
C. Thirunavukkarasu, Sci. Rep., 2017, 7, 4203-4214.
Acknowledgements
CSIR-CSMCRI Communication Number: 124/2018. Authors like
to acknowledge SERB, India (EMR/2014/001219) for financial
support. Authors acknowledge Dr. Subhash C Ghosh and Dr.
Arnab K. Giri for their help and advice on materials synthesis and
catalysis. Authors also acknowledge ADCIF of CSMCRI for
providing instrumental facilities.
[14] a) D. Chen, C. Chen, Z. M. Baiyee, Z. Shao, F. Ciucci, Chem. Rev., 2015,
115, 9869-9921; b) L. Wang, Y. Yu, H. He, Y. Zhang, X. Qin, B. Wang,
Sci. Rep., 2017, 7, 12845-12855; c) A. Saha, A. Sinhamahapatra, T.-H.
Kang, S. C. Ghosh, J.-S. Yu, A. B. Panda, Nanoscale 2017, 9, 17029-
17036.
Keywords: Zinc Oxide • Oxygen vacancy • Nanoflakes •
Tetrazole • Thermocatalysis
[15] a) M. V. Morales, E. A.-Nieto, A. I.-Juez, I. R.-Ramos, A. G.-Ruiz,
ChemSusChem 2015, 8, 2223-2230; b) C. Drouilly, J.-M. Krafft, F.
Averseng, H. L.-Pernot, D. B.-Bachic, C. Chizallet, V. Lecocqc, G.
Costentina, Appl. Catal. A: Gen., 2013, 453, 121-129; c) S. Polarz, J.
Strunk, V. Ischenko, M W. E. Berg, O. Hinrichsen, M. Muhler, M. Driess,
Angew. Chem. Int. Ed., 2006, 45, 2965-2969; d) M.-H. Liu, Y.-W. Chen,
X. Liu, J.-L. Kuo, M.-W. Chu, C.-Y. Mou, ACS Catal., 2016, 6, 115-122.
[16] a) J. C.Wang, P. Liu, X. Z. Fu, Z. H. Li, W. Han, X. X. Wang, Langmuir
2009, 25, 1218-1223; b) M. Y. Guo, A. M. C. Ng, F. Z. Liu, A. B. Djurisic,
W. K. Chan, H. M. Su, K. S. J. Wong, J. Phys. Chem. C 2011, 115,
11095-11101.
[1]
a) C. T. Campbell, J. Sauer, Chem. Rev., 2013, 113, 3859-3862; b) A. R.
Puigdollers, P. Schlexer, S. Tosoni, G. Pacchioni, ACS Catal., 2017, 7,
6493-6513.
[2]
[3]
J. Jia, C. Qian, Y. Dong, Y. Feng Li, H. Wang, M. Ghoussoub, K. T. Butler,
A. Walsh, G. A. Ozin, Chem. Soc. Rev., 2017, 46, 4631-4644.
a) N. Sutradhar, A. K. Biswas, S. K. Pahari, B. Ganguly, A. B. Panda,
Chem. Commun., 2014, 50, 11529-11532; b) P. Pal, S. K. Pahari, A. K.
Giri, S. Pal, H. C. Bajaj, A. B. Panda, J. Mater. Chem. A, 2013, 1, 10251-
10258; c) M.‐Q. Yang, M. Gao, M. Hong, G. W. Ho, Adv. Mater., 2018,
30, 1802894 (1-28); d) M.‐Q. Yang. J. Wang, H, Wu, G. W. Ho, Small
2018, 14, 1703323 (1-24).
[17] a) A. F. Holleman, E. Wiberg, Inorg. Chem., Academic Press, San Diego,
CA, 2001, p. 499-501; b) J. D. Ye, S. L. Gu, S. M. Zhu, F. S. Qin, M. Liu,
W. Liu, X. Zhou, L. Q. Hu, R. Zhang, Y. Shi and Y. D. Zheng, J. Appl.
Phys., 2004, 96, 5308-5310.
[4]
[5]
a) A. K. Radzimska, T. Jesionowski, Materials 2014, 7, 2833-2881; b) A.
Hatamie, A. Khan, M. Golabi, A. P. Turner, V. Beni, W. C. Mak, A.
Sadollahkhani, H. Alnoor, B. Zargar, S. Bano, O. Nur, M. Willander,
Langmuir 2015, 31, 10913-10921; c) F.-X. Liang, Y. Gao, C. Xie, X.-W.
Tong, Z.-J. Li, L.-B. Luo, J. Mater. Chem. C, 2018, 6, 3815-3833.
a) S. Kuld, M. Thorhauge, H. Falsig, C. F. Elkjær, S. Helveg, I.
Chorkendorff, J. Sehested, Science 2016, 352, 969-974; b) B. Meyer, D.
Marx, O. Dulub, U. Diebold, M. Kunat, D. Langenberg, C. Wçll, Angew.
Chem. Int. Ed., 2004, 43, 6642-6645; c) Y. Feng, J. Mi, M. Wu, J.
Shangguan, H. Fan, Energy Fuels 2017, 31, 1015-1022; d) W.-D. Oh, J.
Lei, A. Veksha, A. Giannis, G. Lisak, V. W.-C. Chang, X. Hu, T.-T. Lim,
Fuel 2018, 211, 591-599; e) X. Gu, C. Huanga, W. Li, Catal. Sci. Technol.,
2017, 7, 4294-4301; f) D. Ma, Q. Wang, T. Li, Z. Tang, G. Yang, C. He,
Z. Lu, J. Mater. Chem. C, 2015, 3, 9964-9972; g) S. Gil Girol, T.
Strunskus, M. Muhler, C. Wçll, J. Phys. Chem. B, 2004, 108, 13736-
13745.
[18] a) Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai, Y. Zhu, Appl. Catal. B: Env.,
2013, 138, 26-32; b) D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao, R.
Zong, Y. Zhu, J. Phys. Chem. C 2014, 118, 15300-15307; c) Z. Pei, L.
Ding, J. Hu, S. Weng, Z. Zheng, M. Huang, P. Liu, Appl. Catal. B Env.,
2013, 142, 736-743; d) M. Samadi, H. A. Shivaee, A. Pourjavadi, A. Z.
Moshfegh, Appl. Catal. A General 2013, 466, 153-160.
[19] J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai,
ACS Appl. Mater. Interfaces, 2012, 4, 4024-4030.
[20] N. Uekawa, J. Kajiwara, N. Mochizuki, K. Kakegawa Y. Sasaki, Chem.
Lett., 2001, 30, 606-607.
[21] a) N. Uekawa, N. Mochizuki, J. Kajiwara, K. Kakegawa, F. Mori, Y. J.
Wud, K Kakegawa, Phys. Chem. Chem. Phys., 2003, 5, 929-934; b) B.
Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y.
Pellegrin, E. Blart, A. Smeigh, L.Hammarström, F. Odobel, S. Jobic, J.
Am. Chem. Soc., 2012, 134, 464-470.
[22] Y. Peng, Y. Wang, Q.-G. Chen, Q. Zhu, A. W. Xu, CrystEngComm, 2014,
16, 7906-7913.
[6]
[7]
A. F. Shojaei, K. Tabatabaeian, M. A. Zanjanchi, H. F. Moafi, N.
Modirpanah, J. Chem. Sci., 2015, 127, 481-491.
[23] S. G. Ullattil, P. Periyat, B. Naufal, M. A. Lazar, Ind. Eng. Chem. Res.,
2016, 55, 6413-6421.
a) S. K. Johnston, N. Cherkasova, E. P.-Barrado, A. Aho, D. Y. Murzin,
A. O. Ibhadon, M. G. Francesconi, Appl. Catal. A. Gen., 2017, 544, 40-
45; b) X. Song, H. Sun, X. Cao, Z. Wang, D. Zhao, J. Sun, H. Zhang, X.
Li, RSC Adv., 2016, 6, 112451-112454; c) Y. Li, Y. Zheng, L. Wang, Z.
Fu, ChemCatChem 2017, 9, 1960-1968.
[24] S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, M. H. Cho,
Nanoscale, 2013, 5, 9238-9246.
[25] a) D. Liu, Y. Lv, M. Zhang, Y. Liu, Y. Zhu, R. Zong, Y. Zhu, J. Mater.
Chem. A 2014, 2, 15377-15388; b) H.-L. Guo, Q. Zhu, X.-L. Wu, Y.-F.
Jiang, X. Xie, A.-W. Xu, Nanoscale, 2015, 7, 7216-7223; c) X. Bai, L.
Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Langmuir 2013, 29, 3097-3105;
[8]
A. K. Giri, A. Sinhamahapatra, S. Prakash, J. Chaudhari, V. K. Shahi, A.
B. Panda, J. Mater. Chem. A, 2013, 1, 814-822.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.