Notes and references
z Crystal data: 1, C64H60N20O20Cu8, M = 1937.64, tetragonal, a =
15.2873(12), b = 15.2873(12), c = 14.960(2) A, V = 3496.1(7) A3,
T = 89(2)K, space group P42/n, Z = 2, 19 879 reflections measured,
3579 unique (Rint = 0.1053). Final wR2 = 0.2039 (all data) and R1 =
0.0672 (I 4 2s). 2ꢁMeOH, C34H36N10O11Cu4, M = 1014.89, ortho-
rhombic, a = 14.973(3), b = 12.682(2), c = 20.506(3) A, V =
3893.7(12) A3, T = 89(2)K, space group Pbca, Z = 4, 22 176
Fig. 5 Postulated mechanism for copper-induced deamination of
adpt.
reflections measured, 3984 unique (Rint = 0.1370). Final wR2 =
0.1674 (all data) and R1 = 0.0676 (I 4 2s). For further details:
CCDC 751993 and 751994.
it does not form at all when the ‘‘correct’’ ligand, Hdpt is used
instead of adpt. This suggests that some facet of the copper-
mediated N–N bond breakage is important in determining the
overall structure of the product.
1 Q. Tang, C. Zhang and M. Luo, J. Am. Chem. Soc., 2008, 130,
5840–5841.
2 C. T. Saouma, C. E. Moore, A. L. Rheingold and J. C. Peters,
Inorg. Chem., 2011, 50, 11285–11287.
3 J. B. Howard and D. C. Rees, Chem. Rev., 1996, 96, 2965–2982.
4 Y. Chen, Y. Zhou, P. Chen, Y. Tao, Y. Li and J. Qu, J. Am. Chem.
Soc., 2008, 130, 15250–15251.
5 S. K. Russell, E. Lobkovsky and P. J. Chirik, J. Am. Chem. Soc.,
2009, 131, 36–37.
It has previously been shown that the adpt ligand can
deaminate in high temperature (130–160 1C) solvothermal
reactions in the presence of CoII, FeII, NiII, or CuII
cations,15,21 and recently a very low yield (10%) of deaminated
product when using Cu(OAc)2 at 60 1C.22 The authors do not
postulate a mechanism for this deamination except that it may
be related to the extreme conditions of the solvothermal
reaction. However, the oxidative dimerisation of aryl amines
to give azo-linked aromatics is well documented. Notably this
has been observed for species very similar to adpt, namely
4-amino-1,2,4-triazole, 3,5-dimethyl-4-amino-1,2,4-triazole and
3,5-diphenyl-4-amino-1,2,4-triazole (Fig. S3).23,24
6 G. Dupouy, M. Marchivie, S. Triki, J. Sala-Pala, C. J. Go
Garcıa, S. Pillet, C. Lecomte and J.-F. Letard, Chem. Commun.,
2009, 3404–3406.
7 G. Dupouy, M. Marchivie, S. Triki, J. Sala-Pala, J.-Y. Salaun and
´
mez-
´
¨
C. J. Gomez-Garcıa, Inorg. Chem., 2008, 47, 8921–8931.
´ ´
8 J. A. Kitchen and S. Brooker, Coord. Chem. Rev., 2008, 252,
2072–2092.
9 A. B. Gaspar, M. C. Munoz, N. Moliner, V. Ksenofontov,
G. Levchenko, P. Gutlich and J. A. Real, Monatsh. Chem., 2003,
134, 285–294.
¨
Of particular relevance to this work are two studies: firstly,
an octanuclear complex, [CuII8(dmpzꢀ)8(OHꢀ)8] (dmpzꢀ
=
10 N. Moliner, A. B. Gaspar, M. C. Munoz, V. Niel, H. Cano and
J. A. Real, Inorg. Chem., 2001, 40, 3986–3991.
dimethylpyrazolate), which is formed when [CuI(dmpzꢀ)]n is
exposed to moisture, can effect the oxidation of aniline to
azobenzene (1,2-diphenyldiazene).25,26 Secondly, Zhang and
Jiao have recently reported that a CuBr/pyridine catalyst
system can very effectively catalyse the oxidative conversion
of aniline into azobenzene using air as the oxidant, with the
authors proposing a peroxo-bridged copper complex as the
active species (Fig. S6).27 The authors also observed that
copper(II) complexes could be used as the catalyst, but gave
lower product yields – similar to our observation that we can
obtain 1 from either copper(I) or copper(II) acetate, but only
obtain it as the bulk product when copper(I) is used.
11 N. Moliner, M. C. Munoz, S. Letard, J.-F. Letard, X. Solans,
R. Burriel, M. Castro, O. Kahn and J. A. Real, Inorg. Chim. Acta,
1999, 291, 279–288.
12 N. Moliner, M. C. Munoz, P. J. van Koningsbruggen and
J. A. Real, Inorg. Chim. Acta, 1998, 274, 1–6.
13 P. J. Kunkeler, P. J. van Koningsbruggen, J. P. Cornelissen, A. N.
van der Horst, A. M. van der Kraan, A. L. Spek, J. G. Haasnoot
and J. Reedijk, J. Am. Chem. Soc., 1996, 118, 2190–2197.
14 Z.-S. Meng, L. Yun, W.-X. Zhang, C.-G. Hong, R. Herchel,
Y.-C. Ou, J.-D. Leng, M.-X. Peng, Z.-J. Lin and M.-L. Tong,
Dalton Trans., 2009, 10284–10295.
15 M.-L. Tong, C.-G. Hong, L.-L. Zheng, M.-X. Peng, A. Gaita-
Arino and J. M. C. Juan, Eur. J. Inorg. Chem., 2007, 3710–3717.
16 M. H. Klingele and S. Brooker, Coord. Chem. Rev., 2003, 241, 119–132.
17 J.-P. Zhang, Y.-Y. Lin, X.-C. Huang and X.-M. Chen, Chem.
Commun., 2005, 1258–1260.
We speculate that a similar copper-mediated oxidative
dimerisation could occur in our system giving two molecules
of dpt linked by an azo group (Fig. 5). Formally, loss of
dinitrogen from this would generate two dpt radicals, which
can then be reduced by copper(I) to give the observed dptꢀ
complexes of copper(II). Decompositions of this type have
previously been observed for similar nitrogen-rich species
(Fig. S4 and S5).28,29 Regardless of the mechanism, the sum
of the chemical processes is an N–N bond cleavage reaction
that occurs rapidly and in good yield at ambient temperature
and pressure.
18 J. F. Geldard and F. Lions, J. Org. Chem., 1965, 30, 318–319.
19 J. A. Thomas, Dalton Trans., 2011, 40, 12005.
20 F. Li, J. K. Clegg, L. Goux-Capes, G. Chastanet, D. M. D’Alessandro,
J.-F. Letard and C. J. Kepert, Angew. Chem., Int. Ed., 2011, 50,
´
2820–2823.
21 X. Bao, J.-D. Leng, Z.-S. Meng, Z. Lin, M.-L. Tong, M. Nihei and
H. Oshio, Chem.–Eur. J., 2010, 16, 6169–6174.
22 Z.-S. Meng, L. Yun, W.-X. Zhang, C.-G. Hong, R. Herchel,
Y.-C. Ou, J.-D. Leng, M.-X. Peng, Z.-J. Lin and M.-L. Tong,
Dalton Trans., 2009, 10284–10295.
23 S. H. Li, S. P. Pang, X. T. Li, Y. Z. Yu and X. Q. Zhao, Chin.
Chem. Lett., 2007, 18, 1176–1178.
24 E. E. Glover and K. T. Rowbottom, J. Chem. Soc., Perkin Trans. 1,
1974, 1792–1794.
25 G. A. Ardizzoia, S. Cenini, G. L. Monica, N. Masiocchi and
M. Moret, Inorg. Chem., 1994, 33, 1458–1463.
26 G. A. Ardizzoia, M. A. Angaroni, G. L. Monica, F. Cariati,
M. Moret and N. Masiocchi, J. Chem. Soc., Chem. Commun.,
1990, 1021–1023.
In conclusion, when the deaminated ligand Hdpt is reacted
with copper(II) acetate, a tetranuclear copper(II) complex
forms. In contrast, when adpt is reacted with copper(I) or (II)
acetate salts, an octanuclear expanded-core grid-like copper(II)
complex of the deaminated ligand, dptꢀ, forms. The deamina-
tion occurs under ambient conditions and in good yield and
assembly of the octanuclear complex seems reasonably
tolerant to the initial oxidation state of the metal salt, as well
as the metal : ligand stoichiometry and choice of solvent.
27 C. Zhang and N. Jiao, Angew. Chem., Int. Ed., 2010, 49, 6174.
28 T. M. Klapotke and D. G. Piercey, Inorg. Chem., 2011, 50,
¨
2732–2734.
29 T. M. Klapo
Explos., Pyrotech., 2004, 29, 325–332.
¨
tke, P. Mayer, A. Schulz and J. J. Weigand, Propellants,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 6229–6231 6231