THE OXIDATION OF CARBON MON
159
oxide bridges and the transfer of electrons between
Rh(I) and Cu(II).
8. Titov, D.N., Ustyugov, A.V., Tkachenko, O.P., Kus-
tov, L.M., Zubavichus, Ya.V., Veligzhanin, A.A.,
Sadovskaya, N.V., Oshanina, I.V., Bruk, L.G., and
Temkin, O.N., Kinet. Catal., 2012, vol. 53, no. 2, p. 262.
CONCLUSIONS
9. Golodov, V.A., Sokolsky, D.V., and Noskova, N.F., J.
Mol. Catal.,1977, nos. 1–3, p. 51.
In this work, heterogenized γ-Al O supported cat-
2
3
1
0. Lee, J.S. and Park, E.D., Top. Catal., 2002, vol. 18,
alysts containing rhodium and copper compounds
with and without perfluorocarboxylic acids were pre-
pared for their testing in a coupled propane–carbon
monoxide oxidation process. The catalysts were active
nos. 1–2, p. 67.
1
1. Arutyunov, V.S. and Krylov, O.V., Okislitel’nye
prevrashcheniya metana (Oxidative transformations of
methane), Moscow: Nauka, 1998.
and stable in the CO oxidation reaction at atmospheric 12. Chepaikin, E.G., Usp. Khim., 2011, vol. 80, no. 4,
p. 384.
pressure and a temperature up to 90°C; however, only
traces of organic oxygenates were revealed when 13. Chepaikin, E.G., J. Mol. Catal. A.: Chem, 2014,
vol. 385, p. 160.
attempting to perform the coupled oxidation of pro-
pane and carbon monoxide under these conditions.
1
4. Chepaikin, E.G. and Borshch, V.N., J. Organomet.
Chem., 2015, vol. 793, p. 78.
5. Sen, A., Acc. Chem. Res., 1998, vol. 31, no. 9, p. 550.
6. Lin, M., Hogan, T., and Sen, A., J. Am. Chem. Soc.,
996, vol. 118, no. 19, p. 4574.
Using DRIFTS, it has been shown that carbonyl
rhodium(I) and copper(I) complexes are formed in
the prepared catalysts and reference samples. They are
stable in air in the reference samples and subjected to
oxidation in the catalysts. It is most likely that cop-
per(I) carbonyl does not catalyze CO oxidation. As
follows from the analysis of the EPR spectra, cop-
1
1
1
1
7. Chepaikin, E.G., Bezruchenko, A.P., Leshcheva, A.A.,
Boyko, G.N., Kuzmenkov, I.V., Grigoryan, E.H., and
Shilov, A.E., J. Mol. Catal. A.: Chem, 2001, vol. 169,
p. 89.
per(II) in the reference sample is not reduced by car- 18. Chepaikin, E.G., Bezruchenko, A.P., and Leshcheva, A.A.,
bon monoxide to any appreciable extent. Reduction
Kinet. Catal., 2002, vol. 43, no. 4, p. 507.
takes place only in the presence of both rhodium and 19. Chepaikin, E.G., Bezruchenko, A.P., Boiko, G.N.,
Gekhman, A.E., and Moiseev, I.I., Kinet. Catal., 2006,
copper compounds. In this case, the intensity of the
vol. 47, no. 1, p. 12.
Cu(II) signal in the EPR spectrum decreases nearly to
2
0. Chepaikin, E.G., Bezruchenko, A.P., Menchikova, G.N.,
and Gekhman, A.E., J. Mol. Catal. A.: Chem., 2017,
vol. 426, p. 389.
zero even at an initial atomic ratio Rh(III) : Cu(II) =
1
: 7.5. Hence, at least seven copper(II) ions are avail-
able for the interaction with rhodium.
2
1. Shilov, A.E., Metal Complexes in Biomimetic Chemical
Reactions, Boca Raton: CRC Press, 1997.
2
2. Zuberbuhler, A., Helv. Chim. Acta, 1967, vol. 50, no. 2,
ACKNOWLEDGMENTS
p. 466.
The authors are grateful to D.Yu. Kovalev for per-
forming the X-ray diffraction analysis. E.G. Che-
paikin, A.P. Bezruchenko, and G.N. Menchikova are
grateful to the Russian Foundation for Basic Research
2
2
3. Mehnert, C.P., Chem. – Eur. J., 2005, vol. 11, p. 50.
4. Haumann, M., Dentler, K., Joni, J., Rissager, A., and
Wassersheid, P., Adv. Synth. Catal., 2007, vol. 349,
p. 425.
for financial support (project no. 17-03-00336). 25. Oliver-Bourbigou, H., Magna, L., and Morvan, D.,
Appl. Catal., A., 2010, vol. 373, p. 1.
L.M. Kustov and O.P. Tkachenko are grateful to the
Russian Scientific Foundation for financial support
2
6. Guan, H.L., Lin, J., Qiao, B.T., Yang, X.F., Li, L.,
Miao, S., Liu, J.Y., Wang, A.Q., Wang, X.D., and
Zang, T., Angew. Chem., 2016, vol. 55, p. 2820.
(grant no. 14-50-00126).
2
7. Guan, H.L., Lin, J., Li, L., Wang, X.D., and Zang, T.,
Appl. Catal., B., 2016, vol. 184, p. 299.
REFERENCES
2
2
8. Kustov, L.M., Top. Catal., 1995, vol. 4, p. 131.
1
. Sokol’skii, D.V. and Dorfman, Ya.A., Kataliz ligandami
9. Davydov, A.A. Molecular Spectroscopy of Oxide Catalyst
Surfaces, Hoboken: John Wiley & Sons, Inc., 2003,
p. 466.
v vodnykh rastvorakh (Catalysis by ligands in water solu-
tions), Alma-Ata: Nauka, 1972.
2
3
4
. Rakitskaya, T.L. and Paina, V.Ya., Kinet. Katal., 1990,
3
0. Hadjiivanov, K.I. and Vayssilov, G.N., Adv. Catal.,
vol. 31, no. 2, p. 1393.
2002, vol. 47, p. 307.
. Kuznetsova, L.I., Matveev, K.I., and Zhizhina, E.G.,
Kinet. Katal., 1986, vol. 26, no. 5, p. 1029.
. Kakhniashvili, G.N., Mishchenko, Yu.A., Dulin, D.A.,
Isaeva, E.G., and Gel’bshtein, A.I., Kinet. Katal., 1985,
vol. 26, no. 1, p. 134.
3
1. Sheppard, N. and Nguyen, T.T. Advances in Infrared
and Raman Spectroscopy, Eds. Clark, R.J.H.,
Heste, R.E., vol. 5, chapter 2, London: Heyden and
Son, 1978.
3
2. Kubiak, C.P. and Eisenberg, R., J. Am. Chem. Soc.,
5
. Park, E.D. and Lee, J.S., J. Catal., 2000, no. 1, p. 5.
. Shen, Y., Lu, G., Guo, Y., and Gong, X., Catal. Today,
1
980, vol. 102, p. 3637.
6
3
3. Hosokawa, T., Nomura, T., and Murahashi, S.-I.,
2011, vol. 175, p. 558.
J. Organomet. Chem., 1998, vol. 551, p. 387.
7
. Kotareva, I.A., Oshanina, I.V., Odintsov, K.Yu., Bruk, L.G.,
and Temkin, O.N., Kinet. Katal., 2008, vol. 49, no. 1,
p. 22.
Translated by E. Glushachenkova
KINETICS AND CATALYSIS Vol. 59 No. 2 2018