450 JOURNAL OF CHEMICAL RESEARCH 2013
Tetrakis-(N-octyl-4-pyridinium)-copper-(porphyrin)tetrabromofer-
rate(III) [TCuPyPC8(FeBr4)4] (11): TCuPyPC8(FeBr4)4 was synthe-
sised according to the above procedure from 6 (0.10 g, 0.07 mmol)
and FeBr3 (0.09 g, 0.315 mmol). Dark-purple solid 11 was obtained in
80%yield. ESI C72H92N8CuFe4Br16 (m/z+/−): Cation 1133.00, Anion
375.61.
Received 21 March 2013; accepted 25 May 2013
Paper 1301852 doi: 10.3184/174751913X13727033282329
Published online: 9 August 2013
References
Tetrakis-(N-octyl-4-pyridinium)-zinc-(porphyrin) tetrabromofer-
rate(III) [TZnPyPC8(FeBr4)4] (12). TZnPyPC8(FeBr4)4 was synthe-
sised according to the above procedure from 7 (0.10 g, 0.07 mmol)
and FeBr3 (0.09 g, 0.315 mmol). Dark-purple, solid 12, yield 75%.
ESI C72H92N8ZnFe4Br16 (m/z+/−): Cation 1133.00, Anion 375.61.
1
2
H.J. Lu and X.P. Zhang, Chem. Soc. Rev., 2011, 40, 1899–1909.
P. Kumari, N. Sinha, P. Chauhan and S.M.S. Chauhan, Current organic
synthesis, 2011, 8, 393.
J.S. Lindsey, In: The porphyrin handbook, eds. K.M. Kadish, K.M. Smith
and R. Guilard. Academic Press, San Diego, 2000, Vol. 1, pp. 45–118.
S. Mandal, S. Bhattacharyya, V. Borovkov and A. Patra, J. Phys. Chem. C,
2012, 116, 11401.
D.S. Bohle, E.L. Dodd, T.B.J. Pinter and M.J. Stillman, Inorg. Chem.,
2012, 51, 10747.
L. Chen, Y. Yang, Z.Q. Guo and D.L. Jiang, Adv. Mater., 2011, 23, 3149.
D. Meyer, T. Leifels, L. Sbaragli and W.D. Woggon, Biochem. Biophys.
Res. Commun., 2005, 338, 372.
3
4
5
Synthesis of tetrakis-(4-pyridyl)-metal-(porphyrin) (TMPyP)
Tetrakis-(4-pyridyl)-iron-(porphyrin) (TFePyP) (13): In an N2 atmo-
sphere, a solution of 1 (0.5 g, 0.8 mmol) in DMF (80 mL) was added
to FeCl2·4H2O (1.59 g, 8 mmol). After refluxing 6 h, the resultant
crude products were poured into H2O (200 mL) and allowed to stand
overnight. The purple precipitates were obtained by centrifugation
and washed with deionized water. The dark-brown solid 13 was dried
under vacuum (70 °C, 12 h), yield 92%.
Tetrakis-(4-pyridyl)-cobalt-(porphyrin) (TCoPyP) (14): TCoPyP
was synthesised according to the above procedure from 1 and
CoCl2.6H2O (1.90 g, 8 mmol). The dark-green solid 14 was obtained
in yield of 88%.
Tetrakis-(4-pyridyl)-manganese-(porphyrin) (TMnPyP) (15): TMnPyP
was synthesised according to the above procedure from 1 and MnCl2
(1.00 g, 8 mmol). Dark-green, solid 15 was obtained in yield of 88%.
Tetrakis-(4-pyridyl)-copper-(porphyrin) (TCuPyP) (16): TCuPyP
was synthesised according to the above procedure from 1 and
Cu(CH3COO)2.H2O (1.60 g, 8 mmol). Dark-purple solid 16 was
obtained in yield 90%.
Tetrakis-(4-pyridyl)-zinc-(porphyrin) (TZnPyP) (17): TZnPyP
was synthesised according to the above procedure from 1 and
Zn(CH3COO)2.2H2O (1.76 g, 8 mmol). Dark-purple solid 17 was
obtained in yield 85%.
6
7
8
9
C.M. Che, V. K-Y. Lo, C.Y. Zhou and J.S. Huang, Chem. Soc. Rev., 2011,
40, 1950.
Y. Li, J.S. Huang, Z.Y. Zhou, C.M. Che and X.Z. You, J. Am. Chem. Soc.,
2002, 124, 13185.
10 G.S. Nunes, I. Mayer, H.E. Toma and K. Araki, Journal of Catalysis, 2005,
236, 55.
11 S. Nimri and E. Keinan, J. Am. Chem. Soc., 1999, 121, 8978.
12 E.Y. Jeong and S.E. Park, Res Chem Intermed, 2012, 38, 1237.
13 M.H. Alkordi, Y.L. Liu, R.W. Larsen, J.F. Eubank and M. Eddaoudi, J. Am.
Chem. Soc., 2008, 130, 12639.
14 L. Chen, Y. Yang and D.L. Jiang, J. Am. Chem. Soc., 2010, 132, 9138.
15 L. Chen, Y. Yang, Z.Q. Guo and D.L. Jiang, Adv. Mater., 2011, 23, 3149.
16 Z.C. Sun, Y.B. She, Y. Zhou, X.F. Song and K. Li, Molecules, 2011, 16,
2960.
17 J. Bernadou and B. Meunier, Chem. Commun., 1998, 2167.
18 H. Imai, H. Munakata, Y. Uemori and N. Sakura, Inorg. Chem., 2004, 43,
1211.
19 R.J. Balahura, A. Sorokin, J. Bernadou and B. Meunier, Inorg. Chem.,
1997, 36, 3488.
Conclusions
20 Y. Yoshida and G. Saito, J. Mater. Chem., 2006, 16, 1254.
21 R.E. Del Sesto, T.M. McCleskey, A.K. Burrell et al. Chem. Commun.,
2008, 447.
A
series of novel magnetic, ionic metalloporphyrins,
[TMPyPC8(FeBr4)4], (M = iron, cobalt, manganese, copper
or zinc), have been synthesised. UV-Vis studies revealed
the generation of metalloporphyrins cations, while Raman
spectroscopy was used as a characterisation method for the
paramagnetic anions FeBr4−. The FeBr4− paramagnetic anions
improved water-solubility and magnetic response of the
determined products, particularly making them show weak
ferromagnetic behaviour at room temperature. An increased
magnetic performance was observed in the order TCuPyPC8
(FeBr4)4≤TZnPyPC8(FeBr4)4<TMnPyPC8(FeBr4)4<TCoPyPC8
(FeBr4)4<TFePyPC8(FeBr4)4. Interestingly, samples of the
prepared magnetic ionic metalloporphyrins showed a strong
response to a neodymium magnet, making them attactive
candidates as “reusable compounds” in different systems.
22 T. Peppel, M. Köckerling, M. Geppert-Rybczyńska, R.V. Ralys, J.K.
Lehmann, S.P. Verevkin and A. Heintz, Angew. Chem. Int. Ed., 2010, 49,
7116.
23 Y. Funasako, T. Mochida, T. Inagaki et al., Chem. Commun., 2011, 47,
4475.
24 S. Hayashi and H. Hamaguchi, Chem. Lett., 2004, 33, 1590.
25 Y. Ito, K. Kunimoto, S. Miyachi and T. Kako, Tetrahedron Lett., 1991, 32,
4007.
26 I.C.M.S. Santos, S.L.H. Rebelo, M.S.S. Balula et al. J. Molec. Catal. A,
2005, 231, 35.
27 N.M. Berezina, M.I. Bazanov, A.S. Semeikin, and M.B. Berezin, Russ. J. of
Phys. Chem., A, 2009, 83, 785.
28 Y. Liu, H.J. Zhang, Y. Lu, Y.Q. Cai and X.L. Liu, Green Chem., 2007, 9,
1114.
29 H.J. Zhang, Y. Liu, Y. Lu, X.S. He, X. Wang and X. Ding, J. Molec. Catal.
A, 2008, 287, 80.
30 T. Kominami, T. Matsumoto, K. Ueda et al. J. Mater. Chem., 2001, 11,
2089.
31 Y. Yoshida and G. Saito, J. Mater. Chem., 2006, 16, 1254.
32 Z.C. Sun, Y.B. She and R.G. Zhong, Front. Chem. Eng. China, 2009, 3,
457.
The work was supported by the National Natural Science
Foundation of China (grant No. 21206171 and 21276006), the
Special Funds of the National Natural Science Foundation of
China (grant No. 21127011) and the Petrochmical Joint Funds
of NSFCACNPC (grant No. U1162106).
33 M. Döbbelin, V. Jovanovski, I. Llarena et al. Polym. Chem., 2011, 2,
1275.