Journal of the American Chemical Society
Page 6 of 8
Loh, T.-P., Synthesis of Highly Substituted Racemic and
131, 7212–7213. (e) Inokuma, T.; Furukawa, M.; Uno, T.; Suzuki, Y.;
Yoshida, K.; Yano, Y.; Matsuzaki, K.; Takemoto, Y., Bifunctional
Hydrogen–Bond Donors That Bear a Quinazoline or Benzothiadiazine
Skeleton for Asymmetric Organocatalysis. Chem. Eur. J. 2011, 17,
10470–10477. (f) Crouch, I. T.; Neff, R. K.; Frantz, D. E., Pd–
Catalyzed Asymmetric β–Hydride Elimination en Route to Chiral
Allenes. J. Am. Chem. Soc. 2013, 135, 4970–4973. (g) Line, N.;
Witherspoon, B.; Hancock, E.; Brown, K., Synthesis of ent-[3]-
Ladderanol: Development and Application of Intramolecular Chirality
Transfer [2+2] Cycloadditions of Allenic Ketones and Alkenes, J.
Am. Chem. Soc. 2017, 139, 14392–14395 (h) Song, S.; Zhou, J.; Fu,
C.; Ma, S., Catalytic enantioselective construction of axial chirality in
1,3–disubstituted allenes. Nat. Comm. 2019, 10, 507.
(19) For examples of catalytic asymmetric allenyl alcohol synthesis,
see: (a) Ye, J.; Li, S.; Chen, B.; Fan, W.; Kuang, J.; Liu, J.; Liu, Y.;
Miao, B.; Wan, B.; Wang, Y.; Xie, X.; Yu, Q.; Yuan, W.; Ma, S.,
Catalytic Asymmetric Synthesis of Optically Active Allenes from
Terminal Alkynes. Org. Lett. 2012, 14, 1346–1349. (b) Jiang, Y.;
Diagne, A. B.; Thomson, R. J.; Schaus, S. E., Enantioselective
Synthesis of Allenes by Catalytic Traceless Petasis Reactions. J. Am.
Chem. Soc. 2017, 139, 1998–2005.
(20) For examples of catalytic asymmetric allenyl amine synthesis,
see: (a) Imada, Y.; Nishida, M.; Kutsuwa, K.; Murahashi, S.-I.; Naota,
T., Palladium–Catalyzed Asymmetric Amination and Imidation of
2,3-Allenyl Phosphates. Org. Lett. 2005, 7, 5837–5839. (b) Imada, Y.;
Nishida, M.; Naota, T., Sequential asymmetric homoallenylation of
primary amines with a palladium catalyst. Tetrahedron Lett. 2008, 49,
4915–4917. (c) Boutier, A.; Kammerer–Pentier, C.; Krause, N.;
Prestat, G.; Poli, G., Pd–Catalyzed Asymmetric Synthesis of N–
Allenyl Amides and Their Au–Catalyzed Cycloisomerizative
Enantioenriched Allenylsilanes via Copper-Catalyzed Hydrosilylation
of (Z)-2-Alken-4-ynoates with Silylboronate. J. Am. Chem. Soc.
2015, 137, 14830–14833. (o) Tang, Y.; Chen, Q.; Liu, X.; Wang, G.;
Lin, L.; Feng, X., Direct Synthesis of Chiral Allenoates from the
Asymmetric C–H Insertion of α-Diazoesters into Terminal Alkynes.
Angew. Chem. Int. Ed. 2015, 54, 9512–9516. (p) Yao, Q.; Liao, Y.;
Lin, L.; Lin, X.; Ji, J.; Liu, X.; Feng, X., Efficient Synthesis of Chiral
Trisubstituted 1,2-Allenyl Ketones by Catalytic Asymmetric
Conjugate Addition of Malonic Esters to Enynes. Angew. Chem. Int.
Ed. 2016, 55, 1859–1863. (q) Chu, W.-D.; Zhang, L.; Zhang, Z.;
Zhou, Q.; Mo, F.; Zhang, Y.; Wang, J., Enantioselective Synthesis of
Trisubstituted Allenes via Cu(I)-Catalyzed Coupling of Diazoalkanes
with Terminal Alkynes. J. Am. Chem. Soc. 2016, 138, 14558–14561.
(r) Poulsen, P. H.; Li, Y.; Lauridsen, V. H.; Jørgensen, D. K. B.;
Palazzo, T. A.; Meazza, M.; Jørgensen, K. A., Organocatalytic
Formation of Chiral Trisubstituted Allenes and Chiral Furan
Derivatives. Angew. Chem. Int. Ed. 2018, 57, 10661–10665. (s)
Zhang, Y.; Yu, B.; Gao, B.; Zhang, T.; Huang, H., Triple-Bond
Insertion Triggers Highly Regioselective 1,4-Aminomethylamination
of 1,3-Enynes with Aminals Enabled by Pd-Catalyzed C–N Bond
Activation. Org. Lett. 2019, 21, 535–539.
(9) For selected reviews on the synthesis of 1,3-enynes, see: (a)
Zhou, Y.; Zhang, Y.; Wang, J., Recent advances in transition–metal–
catalyzed synthesis of conjugated enynes. Org. Bio. Chem. 2016, 14,
6638–6650. (b) Trost, B. M.; Masters, J. T., Transition metal–
catalyzed couplings of alkynes to 1,3–enynes: modern methods and
synthetic applications. Chem. Soc. Rev. 2016, 45, 2212–2238.
(10) Adamson, N. J.; Jeddi, H.; Malcolmson, S. J., Preparation of
Chiral Allenes through Pd–Catalyzed Intermolecular Hydroamination
of Conjugated Enynes: Enantioselective Synthesis Enabled by
Catalyst Design. J. Am. Chem. Soc. 2019, 141, 8574–8583.
(11) Huang, Y.; del Pozo, J.; Torker, S.; Hoveyda, A. H.,
Enantioselective Synthesis of Trisubstituted Allenyl–B(pin)
Compounds by Phosphine–Cu–Catalyzed 1,3–Enyne Hydroboration.
Insights Regarding Stereochemical Integrity of Cu–Allenyl
Intermediates. J. Am. Chem. Soc. 2018, 140, 2643–2655.
(12) Sang, H. L.; Yu, S.; Ge, S., Copper–catalyzed asymmetric
hydroboration of 1,3–enynes with pinacolborane to access chiral
allenylboronates. Org. Chem. Front. 2018, 5, 1284–1287.
(13) Gao, D.–W.; Xiao, Y.; Liu, M.; Liu, Z.; Karunananda, M. K.;
Chen, J. S.; Engle, K. M., Catalytic, Enantioselective Synthesis of
Allenyl Boronates. ACS Cat. 2018, 8, 3650–3654.
(14) Yu, S.; Sang, H. L.; Zhang, S.–Q.; Hong, X.; Ge, S., Catalytic
asymmetric synthesis of chiral trisubstituted heteroaromatic allenes
from 1,3–enynes. Commun. Chem. 2018, 1, 64.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Hydroalkylation:
A
New Route Toward Enantioenriched
Pyrrolidones. Chem. Eur. J. 2012, 18, 3840–3844. (d) Wan, B.; Ma,
S., Enantioselective Decarboxylative Amination: Synthesis of Axially
Chiral Allenyl Amines. Angew. Chem. Int. Ed. 2013, 52, 441–445. (e)
Wu, Z.; Berhal, F.; Zhao, M.; Zhang, Z.; Ayad, T.; Ratovelomanana-
Vidal, V., Palladium–Catalyzed Efficient Enantioselective Synthesis
of Chiral Allenes: Steric and Electronic Effects of Ligands. ACS Cat.
2014, 4, 44–48. (f) Poh, J.–S.; Makai, S.; vonꢁKeutz, T.; Tran, D. N.;
Battilocchio, C.; Pasau, P.; Ley, S. V., Rapid Asymmetric Synthesis
of Disubstituted Allenes by Coupling of Flow–Generated Diazo
Compounds and Propargylated Amines. Angew. Chem. Int. Ed. 2017,
56, 1864–1868.
(21) These products are also accessible via protodeboration of the
allenyl-Bpin products from Refs. 11–13 using Cu(OAc)2 (5 mol%),
dppe (5 mol%) and methanol (2 equiv), as described in the Supporting
Information of Ref. 11.
(22) Yang, Y.; Perry, I. B.; Lu, G.; Liu, P.; Buchwald, S. L.,
Copper–catalyzed asymmetric addition of olefin–derived nucleophiles
to ketones. Science 2016, 353, 144.
(15) Oku, M.; Arai, S.; Katayama, K.; Shioiri, T., Catalytic
Synthesis of Allenes via Isomerization of Alkynes under Phase-
Transfer Catalyzed Conditions. Synlett 2000, 2000, 493–494.
(16) Trost, B. M.; Fandrick, D. R.; Dinh, D. C., Dynamic Kinetic
Asymmetric Allylic Alkylations of Allenes. J. Am. Chem. Soc. 2005,
127, 14186–14187.
(17) Wei, X.-F.; Wakaki, T.; Itoh, T.; Li, H.-L.; Yoshimura, T.;
Miyazaki, A.; Oisaki, K.; Hatanaka, M.; Shimizu, Y.; Kanai, M.,
Catalytic Regio- and Enantioselective Proton Migration from Skipped
Enynes to Allenes. Chem 2019, 5, 585-599.
(23) For selected references on copper–catalyzed alcohol silylation
with hydrosilanes, see: (a) Schubert, U.; Lorenz, C., Conversion of
Hydrosilanes to Silanols and Silyl Esters Catalyzed by [Ph3PCuH]6.
Inorg. Chem. 1997, 36, 1258–1259. (b) Ito, H. W., Akiko and;
Sawamura, M., Versatile Dehydrogenative Alcohol Silylation
Catalyzed by Cu(I)−Phosphine Complex. Org. Lett. 2005, 7, 1869–
1871. (c) Jeon, M.; Han, J.; Park, J., Catalytic Synthesis of Silanols
from Hydrosilanes and Applications. ACS Cat. 2012, 2, 1539–1549.
(24) For an example of the selective reduction of a 1,3-enyne to a
1,3-diene, see: Whittaker, A. M.; Lalic, G., Monophasic Catalytic
System for the Selective Semireduction of Alkynes. Org. Lett. 2013,
15, 1112–1115.
(25) For examples of chiral aluminum hydride reagents used for the
semi-reduction of 1,3-enynes, see: (a) Evans, R. J. D.; Landor, S. R.;
Regan, J. P., The asymmetric synthesis and absolute configuration of
allenic alcohols. Chem. Comm. 1965, 397–398. (b) Landor, S. R.;
Miller, B. J.; Regan, J. P.; Tatchell, A. R., The asymmetric reduction
of alkenynols with the lithium aluminium hydride-3-O-benzyl-1,2-O-
cyclohexylidene-α-D-glucofuration complex and the determination of
the absolute configuration of naturally occurring allenes. Chem.
Comm. 1966, 585–586. (c) Cowie, J. S.; Landor, P. D.; Landor, S. R.;
Punja, N., Allenes. Part XXII. The synthesis and absolute
(18) For examples of catalytic asymmetric allenyl ester or ketone
synthesis, see: (a) Ogasawara, M.; Ikeda, H.; Nagano, T.; Hayashi, T.,
Palladium–Catalyzed Asymmetric Synthesis of Axially Chiral
Allenes:ꢀ
A Synergistic Effect of Dibenzalacetone on High
Enantioselectivity. J. Am. Chem. Soc. 2001, 123, 2089–2090. (b)
Imada, Y.; Ueno, K.; Kutsuwa, K.; Murahashi, S.–I., Palladium–
Catalyzed Asymmetric Alkylation of 2,3-Alkadienyl Phosphates.
Synthesis of Optically Active 2-(2,3-Alkadienyl)malonates. Chem.
Lett. 2002, 31, 140–141. (c) Ogasawara, M.; Nagano, T.; Hayashi, T.,
A
New Route to Methyl (R,E)-(−)-Tetradeca-2,4,5-trienoate
(Pheromone of Acanthoscelides obtectus) Utilizing a Palladium–
Catalyzed Asymmetric Allene Formation Reaction. J. Org. Chem.
2005, 70, 5764–5767. (d) Liu, H.; Leow, D.; Huang, K.-W.; Tan, C.-
H., Enantioselective Synthesis of Chiral Allenoates by Guanidine–
Catalyzed Isomerization of 3-Alkynoates. J. Am. Chem. Soc. 2009,
6
ACS Paragon Plus Environment