10.1002/anie.201903534
Angewandte Chemie International Edition
COMMUNICATION
The desired amination products were obtained in high yields (up
to 98%) with excellent enantioselectivities (up to 91% ee).
Moreover, the TAH-CCOF2 catalyst could be readily recovered
by centrifugation and reused at least for seven times without any
obvious loss of activity and enantioselectivity (Table S11). The
crystallinity and covalent connection for the recycled TAH-
CCOF2 were maintained, as evidenced by the recorded PXRD
(Figure S106) and 13C CP/MAS NMR (Figure S107).
This work was financially supported by the National Natural
Science Foundation of China (Nos. 21425206 and 21871120)
and the Natural Science Foundation of Gansu Province (No.
18JR4RA003). We thank Drs. Chun-An Fan, Xue-Yuan Liu, Yun
Li, Xue-Gong She, Shi-Hui Dong, Xiao-Lei Wang, and Saikat
Das for their insightful discussions.
Keywords: divergent synthesis • covalent organic frameworks •
functionality • chiral • asymmetric catalysis
Table 1. Systematic screening of CCOFs catalysts in asymmetric amination of
β-ketoesters.[a]
[1]
[2]
[3]
a) C. Serba, N. Winssinger, Eur. J. Org. Chem. 2013, 2013, 4195-4214;
b) L. Li, Z. Chen, X. Zhang, Y. Jia, Chem. Rev. 2018, 118, 3752-3832.
a) S. L. Schreiber, Science 2000, 287, 1964-1969; b) W. Galloway, A.
Isidro-Llobet, D. Spring, Nat. Commun. 2010, 1, 80.
a) K. R. Murray, D. K. Granner, P. A. Mayes, V. W. Rodwell, Harper’s
Illustrated Biochemistry, Lange Medical Book/McGraw-Hill, New York,
2003; b) J. D. Watson, S. P. Bell, A. Gann, M. Levine, R. Losick, T. A.
Baker, Molecular Biology of the Gene, Pearson, Boston, 2013.
ee (%)[c]
entry
catalyst
MH-CCOF1
MH-CCOF2
MH-CCOF3
MH-CCOF4
TAH-CCOF1
TAH-CCOF2
SAH-CCOF1-Boc
G-CCOF1
yield (%)[b]
1
2
3
4
5
6
81
72
70
65
94
96
12
8
[4]
a) S. Kitagawa, R. Kitaura, S.-i. Noro, Angew. Chem. Int. Ed. 2004, 43,
2334-2375; Angew. Chem. 2004, 116, 2388-2430; b) A. Thomas,
Angew. Chem. Int. Ed. 2010, 49, 8328-8344; Angew. Chem. 2010, 122,
8506-8523; c) A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S.
Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062-6096; d) A. G.
Slater, A. I. Cooper, Science 2015, 348, aaa8075; e) W. Zhang, Q.
Zhao, J. Yuan, Angew. Chem. Int. Ed. 2018, 57, 6754-6773; Angew.
Chem. 2018, 130, 6868-6889; f) M. Pan, K. Wu, J.-H. Zhang, C.-Y. Su,
Coord. Chem. Rev. 2019, 378, 333-349; g) S. J. Garibay, Z. Wang, K.
K. Tanabe, S. M. Cohen, Inorg. Chem. 2009, 48, 7341-7349; h) A. M.
Fracaroli, H. Furukawa, M. Suzuki, M. Dodd, S. Okajima, F. Gándara, J.
A. Reimer, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 8863-8866; i) N.
Huang, R. Krishna, D. Jiang, J. Am. Chem. Soc. 2015, 137, 7079-7082.
a) X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010-6022; b)
S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548-568; c) J. W.
Colson, W. R. Dichtel, Nat. Chem. 2013, 5, 453-465; d) U. Díaz, A.
Corma, Coord. Chem. Rev. 2016, 311, 85-124; e) J. L. Segura, M. J.
Mancheno, F. Zamora, Chem. Soc. Rev. 2016, 45, 5635-5671; f) C. S.
Diercks, O. M. Yaghi, Science 2017, 355; g) Y. H. Jin, Y. M. Hu, W.
Zhang, Nat. Rev. Chem. 2017, 1, 0056; h) S. Das, P. Heasman, T. Ben,
S. Qiu, Chem. Rev. 2017, 117, 1515-1563; i) G. Liu, J. Sheng, Y. Zhao,
Sci. China Chem. 2017, 60, 1015-1022; j) F. Beuerle, B. Gole, Angew.
Chem. Int. Ed. 2018, 57, 4850-4878; Angew. Chem. 2018, 130, 4942-
4972; k) M. S. Lohse, T. Bein, Adv. Funct. Mater. 2018, 28, 1705553; l)
S. Kandambeth, K. Dey, R. Banerjee, J. Am. Chem. Soc. 2018, 141,
1807-1822; m) Y. Song, Q. Sun, B. Aguila, S. Ma, Adv. Sci. 2019, 6,
1801410.
9
5
89
99
7
8
9
67
61
78
27
3
92
10[d]
40
9017
[5]
[a] General conditions: in the presence of the catalyst (0.04 mmol), the
reaction was carried out in DCM (2.0 mL) at –78 °C with 4 (0.20 mmol) and 5
(0.24 mmol) as the reactants. [b] Isolated yield. [c] Enantiomeric excess (ee)
was determined by HPLC with Daicel chiral OD-H column at 210 nm
(hexane/i-PrOH = 95/5, flow rate: 0.6 mL/min). [d] The reaction was carried
out in DCM (1.0 mL) at 25 °C with 4 (0.10 mmol), 5 (0.15 mmol), and catalyst
7 (0.01 mmol) for 10 h.
The spirit in classic organic synthesis is the precise and
efficient covalent-assembly.19 For example, the MacMillan group
used the divergent strategy to synthesize six indole alkaloids
(categorized into three families) from the same tetracyclic
intermediate.20 Being a new member of organic family, COFs are
structurally featured as crystalline and porous macromolecules
organized via covalent assembly.5 In light of the divergent
concept, we produced eight CCOFs (categorized into four
different types) via a three-step transformation of a key platform
molecule, DBCBI. This simple and general strategy may not
only fulfil the critical demands for diversity in the COF synthesis,
but also integrate the efficiency and precision of classic organic
synthesis. By realizing the fine-tuning of COF properties at the
atom/molecular level, this approach provides a combinatorial
library of functional COF materials for further high-throughput
screening and structure-activity investigation. This purpose has
also been achieved by screening out TAH-CCOF2 catalyst as
the best candidate reported for the asymmetric amination
reaction. We therefore expect that this contribution set up a
combinatorial procedure to produce diversified functional COFs.
[6]
a) A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O.
M. Yaghi, Science 2005, 310, 1166-1170; b) P. Kuhn, M. Antonietti, A.
Thomas, Angew. Chem. Int. Ed. 2008, 47, 3450-3453; Angew. Chem.
2008, 120, 3499-3502; c) S. Kandambeth, A. Mallick, B. Lukose, M. V.
Mane, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2012, 134, 19524-
19527; d) T.-Y. Zhou, S.-Q. Xu, Q. Wen, Z.-F. Pang, X. Zhao, J. Am.
Chem. Soc. 2014, 136, 15885-15888; e) G. Lin, H. Ding, D. Yuan, B.
Wang, C. Wang, J. Am. Chem. Soc. 2016, 138, 3302-3305; f) X.
Zhuang, W. Zhao, F. Zhang, Y. Cao, F. Liu, S. Bi, X. Feng, Polym.
Chem. 2016, 7, 4176-4181; g) K. Wang, L. M. Yang, X. Wang, L. Guo,
G. Cheng, C. Zhang, S. Jin, B. Tan, A. Cooper, Angew. Chem. Int. Ed.
2017, 56, 14149-14153; Angew. Chem. 2017, 129, 14337-14341; h) Y.
Lan, X. Han, M. Tong, H. Huang, Q. Yang, D. Liu, X. Zhao, C. Zhong,
Nat. Commun. 2018, 9, 5274; i) S.-Y. Yu, J. Mahmood, H.-J. Noh, J.-M.
Seo, S.-M. Jung, S.-H. Shin, Y.-K. Im, I.-Y. Jeon, J.-B. Baek, Angew.
Chem. Int. Ed. 2018, 57, 8438-8442; Angew. Chem. 2018, 130, 8574-
8578; j) Q. Gao, X. Li, G.-H. Ning, H.-S. Xu, C. Liu, B. Tian, W. Tang, K.
P. Loh, Chem. Mater. 2018, 30, 1762-1768.
[7]
a) D. N. Bunck, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 1885-
1889; Angew. Chem. 2012, 124, 1921-1925; b) H. Oh, S. B. Kalidindi, Y.
Um, S. Bureekaew, R. Schmid, R. A. Fischer, M. Hirscher, Angew.
Chem. Int. Ed. 2013, 52, 13219-13222; Angew. Chem. 2013, 125,
13461-13464; c) L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem.
Acknowledgements
This article is protected by copyright. All rights reserved.