K. Akhbari, A. Morsali / Inorganica Chimica Acta 363 (2010) 1435–1440
1439
this stage, exothermic removal of DPOAcꢀ occurs between 235 and
480 °C with mass loss of 63.0% (Calc. 63.6%). Mass loss
Acknowledgement
a
calculations and XRD pattern (Fig. 2c), shows that the final
decomposition product is metallic silver. Nanorods of compound
1 are much less stable at starts to decompose at 200 °C (Fig. 4b).
The TG curve exhibits a distinct decomposition stage between
200 and 430 °C with a mass loss of 64.2% (calcd 63.6%). Decompo-
sition of compound 1 nanorods starts at about 35° earlier than its
single crystals, probably due to different contact between crystals
and the pan, size, shape and compactness of the two samples or
due to more heat that needed to annihilate the lattices of single
crystal. This stabilization is annihilated approximately by produce
nanorods of this compound by sonochemical process.
Supporting of this investigation by Tarbiat Modares University
is gratefully acknowledged.
References
[1] H. Liang, Q. Tang, K. Yu, S. Li, J. Ke, Mater. Lett. 61 (2007) 1020.
[2] J.A. Creighton, C.G. Blatchford, M.G. Albrecht, J. Chem. Soc., Faraday Trans. 75
(1979) 790.
[3] P.C. Lee, D. Meisel, J. Phys. Chem. 86 (1982) 3391.
[4] J.L.H. Chau, M.K. Hsu, C.C. Hsieh, C.C. Kao, Mater. Lett. 59 (2005) 905.
[5] B.S. Yin, H.Y. Ma, S.Y. Wang, S.H. Chen, J. Phys. Chem.
8898.
B 107 (2003)
[6] M.J. Meziani, H.W. Rollins, L.F. Allard, Y.P. Sun, J. Phys. Chem. B 106 (2002)
11178.
Fig. 2c shows the XRD patterns of the residue obtained from cal-
cinations of compound 1 nanorods at 873 K. The obtained patterns
match with the standard patterns of cubic silver with the lattice
parameters (a = 4.0862 Å and z = 4) which are close to the reported
values, (JCPDS card number 04-0783), but SEM image shows that
agglomeration was occurred in this process (Fig. 5 up) and a
spongy solid, due to pyrolyze of DPOAc- and remove of the result-
ing gas, was formed. In order to obtain silver nano structures from
NCP of 1 and to prevent from agglomeration, we use oleic acid as a
surfactant to thermal decomposition of compound 1 occurs in the
resulting micelles [34]. XRD patterns of residue (Fig. 2d), shows
that the resulting residue was cubic silver with the lattice param-
eters mentioned above. SEM image of the resulting residue shows
the formation of silver nanoparticles with the average diameter of
about 95 nm (Fig. 5 down). In our previous work on silver(I) NCP,
we observed that silver nanoparticles obtained from 3D coordina-
tion polymer with no argentophilic interactions in the resulting
network [18]. In this work, we obtained similar results from 2D
coordination polymer with no argentophilic interactions as a chain
or grid in the compound 1 network. As could be seen from Fig. 1c,
silver atoms are separated from each other and surrounded with
aromatic phenyl rings. These aromatic phenyl rings and the result-
ing structure could be considered as a template to fabricate silver
nanoparticles [63]. Probably we could conclude that silver nano-
particles are obtained from 2D or 3D coordination polymer with
no argentophilic interactions as a chain, grid or network in the
resulting structure.
[7] Y.P. Sun, P. Atorngitjawat, M.J. Meziani, Langmuir 17 (2001) 5707.
[8] M. Ji, X.Y. Chen, C.M. Wai, J.L. Fulton, J. Am. Chem. Soc. 121 (1999) 2631.
[9] J.P. Abid, A.W. Wark, P.F. Brevet, H.H. Girault, Chem. Commun. 7 (2002)
792.
[10] H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, G.Q. Xu,
Langmuir 12 (1996) 909.
[11] J. Keskinen, P. Ruuskanen, M. Marttunen, S.-P. Hannula, Appl. Organomet.
Chem. 15 (2001) 15.
[12] S. Liua, R.J. Wehmschulte, G. Lian, C.M. Burba, J. Solid State Chem. 179 (2006)
696.
[13] H.S. Barud, C. Barrios, T. Regiani, R.F.C. Marques, M. Verelst, J. Dexpert-Ghys, Y.
Messaddeq, S.J.L. Ribeiro, Mater. Sci. Eng. C 28 (2008) 515.
[14] M.J. Hampden-Smith, T.T. Kodas, Adv. Mater. 7 (1995) 8.
[15] N.H. Dryden, J.J. Vittal, R.J. Pudderphatt, Chem. Mater. 5 (1993) 765.
[16] H. Schmidt, Y. Shen, M. Leschke, Th. Haase, K. Kohse-Höinghaus, H. Lang, J.
Organomet. Chem. 25 (2003) 669.
[17] M.N. McCain, S. Schneider, M.R. Salata, T.J. Marks, Inorg. Chem. 47 (2008)
2534.
[18] R. Bashiri, K. Akhbari, A. Morsali, Inorg. Chim. Acta 362 (2009) 1035.
[19] X.P. Sun, S.J. Dong, E.K. Wang, J. Am. Chem. Soc. 127 (2005) 13102.
[20] N. Soltanzadeh, A. Morsali, Ultrason. Sonochem. 17 (2010) 139.
[21] H. Ahmadzadi, F. Marandi, A. Morsali, J. Organomet. Chem. 694 (2009)
3565.
[22] A. Morsali, H.H. Monfared, A. Morsali, J. Mol. Struct. 938 (2009) 10.
[23] A. Aslani, A. Morsali, Inorg. Chim. Acta 362 (2009) 5012.
[24] M.J.S. Fard-Jahromi, A. Morsali, Ultrason. Sonochem. 17 (2010) 435.
[25] A. Aslani, A. Morsali, M. Zeller, Solid State Sci. 10 (2008) 1591.
[26] K. Akhbari, A. Morsali, Cryst. Growth Des. 7 (2007) 2024.
[27] K. Akhbari, A. Morsali, M. Zeller, J. Organomet. Chem. 692 (2007) 3788.
[28] A. Aslani, A. Morsali, V.T. Yilmaz, C. Kazak, J. Mol. Struct. 929 (2009) 187.
[29] A. Morsali, M.Y. Masoumi, Coord. Chem. Rev. 253 (2009) 1882.
[30] A. Aslani, A. Morsali, M. Zeller, Dalton Trans. (2008) 5173.
[31] A. Aslani, A. Morsali, Chem. Commun. (2008) 3402.
[32] G.M. Sheldrick, SHELXS-97 and SHELXL-97, Göttingen University, Germany, 1997.
[33] Mercury 1.4.1, Copyright Cambridge Crystallographic Data Center, 12 Union
Road, Cambridge, CB2 1EZ, UK, 2001–2005.
[34] L. Tian, L.Y. Yep, T.T. Ong, J. Yi, J. Ding, J.J. Vittal, Cryst. Growth Des. 9 (2009)
352.
4. Conclusions
[35] L. Han, D. Yuan, B. Wu, C. Liu, M. Hong, Inorg. Chim. Acta 359 (2006) 2232.
[36] P.-Y. Cheng, C.-Y. Chen, H.M. Lee, Inorg. Chim. Acta 362 (2009) 1840.
[37] D. Sun, G.-G. Luo, Q.-J. Xu, N. Zhang, Y.-C. Jin, H.-X. Zhao, L.-R. Lin, R.-B. Huang,
L.-S. Zheng, Inorg. Chem. Commun. 12 (2009) 782.
[38] S.Q. Liu, H. Konaka, T. Kuroda-Sowa, M. Maekawa, Y. Suenaga, G.L. Ning, M.
Munakata, Inorg. Chim. Acta 358 (2005) 919.
[39] G.G. Luo, R.B. Huang, J.H. Chen, L.R. Lin, L.S. Zheng, Polyhedron 27 (2008)
2791.
[40] G.G. Luo, D. Sun, Q.J. Xu, N. Zhang, R.B. Huang, L.R. Lin, L.S. Zheng, Inorg. Chem.
Commun. 12 (2009) 436.
Nanorods of an organometallic coordination polymer of silver(I)
with a less-common g
1-coordination mode of the phenyl rings was
synthesized by sonochemical process. Concentration increase of
the initial reagents results in formation of compound 1 nanorods
with the best morphology. Decreasing the size of this coordination
polymer to nanometer results in less thermal stability of this com-
pound compared with its single crystal sample. Calcinations of
compound 1 nanorods to fabricate silver nano structures was not
successful. In order to obtain silver nanoparticles from compound
1, oleic acid was used as a surfactant to thermal decomposition
of compound 1 and formation of silver nanoparticles occurs in
the resulting micells at 180 °C. We could conclude that silver nano-
particles are obtained from 2D or 3D coordination polymer with no
argentophilic interactions as a chain, grid or network in the result-
ing structure.
[41] P. Pyykkö, Chem. Rev. 97 (1997) 597.
[42] M. Jansen, Angew. Chem., Int. Ed. Engl. 26 (1987) 1098.
[43] B. Coyle, M. McCann, K. Kavanagh, M. Devereux, V. Mckee, N. Kayal, D. Egan, C.
Deagan, G.J. Finn, J. Inorg. Biochem. 98 (2004) 1361.
[44] V.T. Yilmaz, S. Hamamci, W.T.A. Harrison, C. Thöne, Polyhedron 24 (2005)
693.
[45] L.S. Ahmet, J.R. Dilworth, J.R. Miller, N. Wheatley, Inorg. Chim. Acta 278 (1998)
229.
[46] S.-P. Yang, H.-L. Zhu, X.-H. Yin, X.-M. Chen, L.-N. Ji, Polyhedron 19 (2000) 2237.
[47] I. Ino, L. Ping, M. Munakata, M. Maekawa, Y. Suenaga, T. Kuroda-Sowa, Y.
Kitamori, Inorg. Chem. 39 (2000) 2146.
[48] E. Bosch, C.L. Barnes, Inorg. Chem. 41 (2002) 2543.
[49] J.A.R. Navarro, J.M. Salas, M.A. Romero, R. Faure, J. Chem. Soc., Dalton Trans.
(1998) 901.
5. Supplementary material
[50] A.L. Pickering, D.-L. Long, L. Cronin, Inorg. Chem. 43 (2004) 4953.
[51] H.G. Smith, R.E. Rundle, J. Am. Chem. Soc. 80 (1958) 5075.
[52] E.A.H. Griffiths, E.L. Amma, J. Am. Chem. Soc. 96 (1974) 5407.
[53] T.C.H. Mak, W.C. Ho, N.Z. Huang, J. Organomet. Chem. 251 (1983) 413.
[54] H.O. Davies, J.R. Dilworth, D.V. Griffiths, J.R. Miller, Polyhedron 18 (1999)
459.
CCDC 639612 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
data_request/cif.