Organic Process Research & Development 2009, 13, 98–101
Technical Notes
An Improved and Scalable Process for Celecoxib: A Selective Cyclooxygenase-2
Inhibitor§
Anumula Raghupathi Reddy, Alla Sampath, Gilla Goverdhan, Bojja Yakambaram, Kagga Mukkanti,‡ and Padi Pratap Reddy*
Department of Research and DeVelopment, Integrated Product DeVelopment, InnoVation Plaza, Dr. Reddy’s Laboratories Ltd.,
SurVey Nos. 42, 45, 46, and 54, Bachupally, Qutubullapur, R R Dist-500 072, A.P., India
Abstract:
An improved, scalable and commercially viable process is devel-
oped for an active pharmaceutical ingredient, celecoxib.
Introduction
Figure 1. Chemical structure of celecoxib.
Scheme 1. Synthetic scheme of celecoxib
Pyrazoles have been widely described as pharmaceutical
therapeutic agents, including antiinflammatories and antidia-
betics. Celecoxib (4-[5-(4-methylphenyl)-3-(trifluoromethyl)-
1H-pyrazol-1-yl] benzene sulfonamide, Figure 1) was the first
cyclooxygenase-2 (COX-2) inhibitor approved for the treatment
of rheumatism and osteoarthritis.1,2 This drug was devoid of
the usual adverse effects associated with conventional nonste-
roidal antiinflammatory agents.3 Celecoxib was developed by
GD Searle, currently available in the market under the brand
name of Celebrex.
The preparation of pyrazoles from the condensation of
diketones with hydrazines is well documented4 in the literature.
The first reported synthetic method5-7 for the preparation of
celecoxib involved condensation of diketone 2 with phenyl
§ Dr. Reddy’s Communication no. IPDOIPM-00139.
* To whom correspondence should be addressed. E-mail: prataprp@
drreddys.com. Fax: 914044346285. Telephone: 9989997176.
‡ Institute of Science and Technology, Center for Environmental Science,
J.N.T. University, Kukatpally, Hyderabad-500 072, A.P., India.
(1) Simon, L. S.; Lanza, F. L.; Lipsky, P. E.; Hubbard, R. C.; Talwalker,
S.; Schwartz, B. D.; Isakson, P. C.; Geis, G. S. Arthritis Rheum 1998,
41, 1591.
hydrazine hydrochloride 3 in refluxing ethanol, and this reaction
yielded celecoxib 1 along with regioisomer 4 in the ratio of
99.5:0.5 with a yield of around 46% (Scheme 1). O’Shea and
co-workers8 described a two-step process for the preparation
of celecoxib from a similar condensation of a diketone 2 and
phenyl hydrazine hydrochloride 3 in an amide solvent. The
celecoxib was obtained as a solvate of the amide solvent and
was subsequently isolated and recrystallised from isopropanol
and water to produce an unsolvated celecoxib. Usage of
multisolvent system and repeated crystallizations made this
process less attractive. Zhi and co-workers9 synthesized cele-
coxib by reacting diketone 2 with phenyl hydrazine hydrochlo-
ride 3 in a mixture of 90% ethanol and methyl tert-butyl ether
(2) (a) Goldstien, J. L.; Silverstein, F. E.; Agrawal, N. M.; Hubbard, R. C.;
Kaiser, J.; Maurath, C. I.; Verburg, K. M.; Geis, G. S. Am. J.
Gastroenterol 2000, 95, 1681. (b) Daily Drug News.com (Daily
Essentials) January 4, 1999.
(3) Drug Data Rep, 1997 19 (2), 161.
(4) (a) Matsuo, M.; Tsuji, K.; Konishi, N.; Nakamura, K. EP patent
0,418,845, A1, 1990. (b) Matsuo, M.; Tsuji, K.; Konishi, N.; Ogino,
T. EP patent 0,554,829, A1, 1993. (c) Nishiwaki, T. Bull. Chem. Soc.
Jpn. 1969, 42, 3024. (d) Soliman, R.; Feid-allah, H. J. Pharm. Sci.
1980, 70, 602. (e) Wright, J. B.; Dulin, W. E.; Markillie, J. H. J. Med.
Chem. 1963, 7, 102. (f) Habeeb, A. G.; Rao, P. N. P.; Knaus, E. E.
J. Med. Chem. 2001, 44, 3039. (g) Szabo, G.; Fischer, J.; Kis-Varga,
A.; Gyires, K. J. Med. Chem. 2008, 51, 142. (h) Oh, L. M. Tetrehedron
Lett. 2006, 47, 7943.
(5) Talley, J. J.; Penning, T. D.; Collins, P. W.; Rogier, D. J.; Malecha,
J. W.; Miyashiro, J. M.; Bertenshaw, S. R.; Khanna, I. K.; Graneto,
M. J.; Rogers, R. S.; Carter, J. S. US patent 5,466,823, 1995.
(6) Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins,
P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.;
Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson,
G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.;
Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson,
P. C. J. Med. Chem. 1997, 40, 1347.
(7) Talley, J. J.; Penning, T. D.; Collins, P. W.; Rogier, D. J.; Malecha,
J. W.; Miyashiro, J. M.; Bertenshaw, S. R.; Khanna, I. K.; Graneto,
M. J.; Rogers, R. S.; Carter, J. S.; Docter, S. H.; Yu, S. S. US patent
6,586,603, B1, 2003.
(8) (a) O′ Shea, P. ; Tillyer, R. D. ; Wang, X. ; Clas, S. D. ; Dalton, C.
US patent 6,150,534, 2000. (b) O′ Shea, P. ; Tillyer, R. D. ; Wang,
X. ; Clas, S. D. ; Dalton, C. US patent 6,232,472, 2001.
(9) (a) Zhi, B. ; Newaz, M. US patent 5,892,053, 1999. (b) Zhi, B. ; Newaz,
M. US patent 5,910,597, 1999.
98
•
Vol. 13, No. 1, 2009 / Organic Process Research & Development
10.1021/op800158w CCC: $40.75
2009 American Chemical Society
Published on Web 11/26/2008