S. Milione, F. Grisi, R. Centore, A. Tuzi
FULL PAPER
3.02 [m, 1 H, CH(CH3)2], 1.53 [s, 9 H, C(CH3)3], 1.29 [s, 9 H,
by difference Fourier map and riding on carrier atoms. Max. resid-
C(CH3)3], 0.82 [dd, 6 H, CH(CH3)2], 0.05 [s, 3 H, Al(CH3)] ppm. ual electronic density was 0.306 (–0.348) eÅ–3 for complex 1 and
19F NMR (376 MHz, C6D6, 25 °C): δ = –122.3 (q, 2 F, o-C6F5), 0.340 (–0.659) eÅ–3 for (phimid-H·Br). Some crystal and collection
–154.3 (t, 1 F, p-C6F5), –161.6 (m, 2 F, o-C6F5) ppm. Spectroscopic
data for [MeB(C6F5)2]: 1H NMR (400 MHz, C6D6, 25 °C): δ = 1.33
(t, 3 H, B–CH3) ppm. 19F NMR (376 MHz, C6D6, 25 °C): δ =
–130.2 (m, 4 F, o-C6F5), –147.3 (m, 2 F, p-C6F5), –162.2 (m, 4 F, m-
C6F5) ppm. 11B NMR (–25.19 MHz, C6D6, 25 °C): δ = 71.5 [s, 1B,
MeB(C6F5)2] ppm. Spectroscopic data for [Me2B(C6F5)]: δ = 0.96
(t, 3 H, B-CH3) ppm. 19F NMR (376 MHz, C6D6, 25 °C): δ =
–131.3 (d, 2 F, o-C6F5), –151.7 (m, 1 F, p-C6F5), –162.8 (m, 2 F, m-
C6F5) ppm. 11B NMR (–25.19 MHz, C6D6, 25 °C): δ = 80.4 [s, 1B,
Me2B(C6F5)] ppm.
data are reported in Table 3.
CCDC-689736 (for 1) and -689737 (for phimid-H·Br) contain the
supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Supporting Information (see also the footnote on the first page of
this article): NMR spectra and 2D NMR experiments for 1–5.
[1] a) D. A. Atwood, M. J. Harvey, Chem. Rev. 2001, 101, 37–52;
b) S. Yamada, Coord. Chem. Rev. 1999, 190–192, 537–555; c)
C.-M. Che, J.-S. Huang, Coord. Chem. Rev. 2003, 242, 97–113.
[2] a) P. A. Cameron, V. C. Gibson, D. J. Irvine, Angew. Chem. Int.
Ed. 2000, 39, 2141–2144; b) Z. Y. Zhong, P. J. Dijkstra, J.
Feijen, Angew. Chem. Int. Ed. 2002, 41, 4510–4513; c) P. Horm-
nirun, E. L. Marshall, V. C. Gibson, A. J. P. White, D. J. Wil-
liams, J. Am. Chem. Soc. 2004, 126, 2688–2689; d) M. A.
Munoz-Hernandez, M. L. McKee, T. S. Keizer, B. C. Year-
wood, D. A. Atwood, J. Chem. Soc., Dalton Trans. 2002, 410–
414; e) J. Lewin´ski, P. Horeglad, M. Dranka, I. Justyniak, In-
org. Chem. 2004, 43, 5789–5791; f) S. Milione, F. Grisi, R. Cen-
tore, A. Tuzi, Organometallics 2006, 25, 266–274; g) N. No-
mura, T. Aoyama, R. Ishii, T. Kondo, Macromolecules 2005,
38, 5363–5366.
Generation of (phimid)AlMeBr+MeB(C6F5)3 (5): In a glove-box,
–
equimolar amounts of (phimid)AlMe2Br (2, 11 mg, 0.021 mmol)
and B(C6F5)3 (11 mg, 0.021 mmol) were placed in a sample vial
and dissolved in C6D6 (0.7 mL). The resulting yellow solution was
transferred to a NMR tube (10 mm o.d.) and analysed at 25 °C.
Spectroscopic data for (phimid)AlMeBr+: 1H NMR (400 MHz,
C6D6, 25 °C): δ = 7.70 (d, 1 H, Ph–H), 7.48 (s, 1 H, NCHN), 7.13
(s, 1 H, CH=N), 6.79 (d, 1 H, Ph–H), 6.46 (s, 1 H, NCH), 6.06 (s,
1 H, NCH), 4.04 [m, 1 H, CH(CH3)2], 3.36 (m, 2 H, NCH2), 2.98
(m, 2 H, NCH2), 1.47 [s, 9 H, C(CH3)3], 1.21 [s, 9 H, C(CH3)3],
0.51 [dd, 6 H, CH(CH3)2], –0.14 [s, 3 H, Al(CH3)2] ppm. Spectro-
scopic data for [MeB(C6F5)3]–: 1H NMR (400 MHz, C6D6, 25 °C):
δ = 1.16 (BCH3) ppm. 19F NMR (376 MHz, C6D6, 25 °C): δ =
–132.5. (d, 2 F, o-C6F5), –163.9 (t, 2 F, m-C6F5), –166.8 (t, 1 F, p-
C6F5) ppm. 11B NMR (–25.19 MHz, C6D6, 25 °C): δ = –14.7 [s,
[3] J. Lewin´ski, J. Zachara, I. Justyniak, M. Dranka, Coord. Chem.
Rev. 2005, 249, 1185–1199.
[4] a) L. G. Tamar, C. J. Drummond, Chem. Rev. 2008, 108, 206–
237; b) T. Welton, Chem. Rev. 1999, 99, 2071–2084.
[5] a) M. Niehues, G. Kehr, R. E. Fröhlich, G. Erker, Z. Natur-
forsch., Teil B 2003, 58, 1005–1008; b) S. K. Chattopadhyay,
T. C. W. Mak, B.-S. Luo, L. K. Thompson, A. Rana, S. Ghosh,
Polyhedron 1995, 14, 3661–3667.
[6] a) W. Li, H. Sun, M. Chen, Z. Wang, D. Hu, Q. Shen, Y.
Zhang, Organometallics 2005, 24, 5925–5928; b) J. Zhang, H.
Yao, Y. Zhang, H. Sun, Q. Shen, Organometallics 2008, 27,
2672–2675.
–
1B, MeB(C6F5)3 ] ppm.
Crystal Structure Determinations: Data collection was performed
at low temperature (–100 °C) for (phim)AlMe2 (1) and at 20 °C for
(phimid-H·Br) on a Bruker–Nonius kappa CCD diffractometer
(graphite monochromated Mo-Kα radiation, phi scans + omega
scans to fill the asymmetric unit). Cell parameters were obtained
from a least-squares fit of the θ angles of 188 reflections in the
range 3.460°ՅθՅ21.129° for complex 1 and of 98 reflections in
the range 3.919°ՅθՅ18.044° for (phimid-H·Br). A semiempirical
absorption correction (multiscan, SADABS[21]) was applied in both
cases. Both structures were solved by direct methods and anisotrop-
ically refined by the full-matrix, least-squares method on F2 against
all independent measured reflections (SIR97[22] and SHELX-97[23]
programs). H atoms were placed in calculated positions or located
[7] V. T. Kasumov, F. Köksal, A. Sezer, Polyhedron 2005, 24, 1203–
1211.
[8] G. Desiraju, T. Steiner in The Weak Hydrogen Bond in Struc-
tural Chemistry and Biology, Oxford University Press, 1999.
[9] a) P. A. Cameron, V. C. Gibson, C. Redshaw, J. A. Segal, G. A.
Solan, A. J. P. White, D. J. Williams, J. Chem. Soc., Dalton
Trans. 2001, 1472–1476; b) J. Lewin´ski, J. Zachara, K. B. Sta-
rowieyski, Z. Ochal, I. Justyniak, T. Kopec´, P. Stolarzewicz, M.
Dranka, Organometallics 2003, 22, 3773–3780.
Table 3. Crystal, collection and refinement data.
[10] D. Braga, F. Grepioni, E. Tedesco, Organometallics 1998, 17,
2669–2672.
(phim)AlMe2
phimid-H·Br
[11] a) A. G. Avent, P. A. Chaloner, M. P. Day, K. R. Seddon, T.
Welton, J. Chem. Soc., Dalton Trans. 1994, 3405–3413; b) A.
Elaiwi, P. B. Hitchcock, K. R. Seddon, N. Srinivasan, Y. Tan,
T. Welton, J. A. Zora, J. Chem. Soc., Dalton Trans. 1995, 3467–
3472.
Chemical formula
Formula weight
T [K]
Crystal system
Space group
a [Å]
b [Å]
c [Å]
α [°]
β [°]
C20H34NOAl
331.46
173
orthorhombic
Pbcn
25.018(4)
14.638(4)
11.902(4)
90
(C23H36N3O) Br·1/2H2O
459.47
293
triclinic
¯
P1
[12] The addition of AlMe3 to a [D6]benzene solution of complex
1 at room temperature produces no change in the correspond-
10.347(1)
11.830(2)
21.585(4)
101.85(1)
91.36(2)
106.81(2)
2465.5(7)
4, 1.238
1.687
1
ing H NMR spectrum, excluding the possibility of formation
of aggregates between 1–3 and free AlMe3 through the oxygen
of the phenolate ligand (see Supporting Information).
[13] M. J. Hynes, J. Chem. Soc., Dalton Trans. 1993, 311–312.
[14] A. A. Fannin, L. A. King, J. A. Levisky, J. S. Wilkes, J. Phys.
Chem. 1984, 88, 2609–2614.
[15] For an [nBu4NBr]/[(phim)AlMe2] molar ratio equal to 1.6, the
observed change in chemical shift of the HC=N proton of
(phim)AlMe2 (1) is 0.03 ppm.
90
90
γ [°]
V [Å3]
4359(2)
8, 1.010
0.098
3.26°–27.50°
4966/218
0.0548
Z, dcalc [gcm–3]
µ [mm–1]
Theta range
Data/parameters
R1 [IϾ2σ(I)]
wR2 (all data)
2.27°–27.50°
10350/526
0.0591
[16] a) D. A. Atwood, Coord. Chem. Rev. 1998, 176, 407–430; b)
D. A. Atwood, B. C. Yearwood, J. Organomet. Chem. 2000,
600, 186–197.
0.1308
0.1479
5538
www.eurjic.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2008, 5532–5539