3
4. Mukhopadhyay, S.; Chandnani, K. H.; Chandalia, S. B. Org. Process
Res. Dev. 1999, 3, 196-200.
Diisopropyl carbinol 1m only gave the corresponding α-
chloro ketone 3m (Scheme 3); presumably the formation of α,α'-
dichloro ketone from the carbinol was prevented by steric
hindrance.
5. Xin, H.; Yang, S.; An, B.; An, Z. RSC Adv. 2017, 7, 13467-13472.
6. Ben-Daniel, R.; de Visser, S. P.; Shaik, S.; Neumann, R. J. Am. Chem.
Soc., 2003, 125, 12116-12117.
7. Terent’ev, A.; Krylov, I.; Ogibin, Y.; Nikishin, G. Synthesis, 2006, 3819-
3824.
8. Vyas, P. V.; Bhatt, A. K.; Ramachandraiah, G.; Bedekar, A. V.
Tetrahedron Lett. 2003, 44, 4085-4088.
9. Bahrami, K.; Khodaei, M. M.; Kavianinia, I. J. Chem. Res. 2006, 783-
784.
10. Guo, H. Y.; Li, J. C.; Shang, Y. L., Chin. Chem. Lett. 2009, 20, 1408-
1410.
11. Chiappe, C.; Leandri, E; Tebano, M. Green Chem. 2006, 8, 742-745.
12. Kimpe, N.; Verhe, R. In the Chemistry of α-Haloketones, α-
Haloaldehydes and α-Haloimines, Pataim S., Rappoport, Z., Ed.; John
Wiley & Sons: Chichester. UK, 1988; pp 1-119.
13. Britton, R.; Kang, B. Nat. Prod. Rep. 2013, 30, 227.
14. Li, J. J.; Name Reactions, Springer-Verlag, Berlin Heidelberg, 2003.
15. Nagarajaiah, H.; Mishra, A. K.; Moorthy, J. N. Org. Biomol. Chem. 2016,
14, 4129-4125.
16. Yoon, S. C.; Cho, J.; Kim, K. J. Chem. Soc., Perkin Trans.1. 1998, 109.
17. Tang, Q.; Chen, X.; Tiwari, B.; Chi, Y. R. Organic Lett. 2012, 14, 1922-
1925.
18. McDonald, R. N.; Cousins,R.C. J. Org. Chem. 1980, 45, 2976.
19. Mamedov, V. A.; Litvinov, I. A.; Kataeva, O, N.; Rizvanov, I. Kh.;
Nuretdinov, I. A. Monatsh. Chem. 1994, 125, 1427.
Scheme 3. Oxidation-chlorination of diisopropyl carbinol 1m to α-
chloro ketone 3m.
A similar result was previously observed in the reaction of 1m
with H2O2-HBr. The replacement of hydrogen by bromine
occurred on only one isopropyl group and was explained by
steric effects.56 It is important to note that 2-methyl-octan-3-ol 1l
containing only one isopropyl group was dichlorinated with the
formation of 2-methyl-2,4-dichlorooctan-3-one 2l; thus when the
second substituent at the α-carbon atom was absent both alkyl
groups were chlorinated.
20. Morita, S. K.; Ganguli, A. N.; Chakravarti, N. N.; Adhya, R. N.
Tetrahedron Lett. 1971, 199.
21. Jiang, J.; Zou, H.; Dong Q.; Wang R.; Lu, L.; Zhu, Y.; He, W. J. Org.
Chem. 2016, 81, 51-56.
Methyl tert-butyl carbinol 1n only gave the corresponding
α,α-dichloro ketone 4n (Scheme 4).
22. Shimizu, N.; Tanaka, M.; Tsuno, Y. J. Am. Chem. Soc. 1982, 104, 1330-
1340.
23. Kumar, S.; Murray, R. J. Am. Chem. Soc. 1984, 106, 1040-1045.
24. Galluicci, R. R.; Going, R. J. Am. Chem. Soc. 1981, 46, 2532-2538.
25. Prugh, J.; Deana, A.; Wiggins, J. Synthesis 1989, 554-556.
26. Brown, C.; Freiberg, J.; Healy, P. Acta Crystallogr. Sect. E: Struct. Rep.
Online 2002, 58, 1239-1240.
Scheme 4. Oxidation-chlorination of methyl tert-butyl carbinol
27. Gabbutt, C.; Hepworth, J.; Heron, B. Tetrahedron 1994, 50, 5245-5254.
28. Oka,K.; Hara, S. J. Org. Chem. 1978, 43, 4533.
1n to α,α-dichloro ketone 4n
.
29. Tsolomitis, A.; Sandris, C. J. Heterocycl. Chem. 1980, 17, 1645.
30. Sehgal, R. K.; Krubsack, A. J. Synth. Commun. 1980, 10, 245.
31. Silva, S.; Maycock, C. D. Tetrahedron Lett. 2018, 59, 1233-1238.
32. Inoue, H.; Sakata, M.; Imoto, E. Bull. Chem. Soc. Jpn. 1973, 46, 2211.
33. Chen, T.; Peng, R.; Hu, W.; Zhang, Fu-Min. Org. Biomol. Chem. 2016,
14, 9859-9867.
34. Nobrega, J.; Goncalves, S.; Peppe, C. Synth. Commun. 2002, 32, 3711-
3717.
35. Moriuchi, T.; Fukyi. Y.; Kato. S.; Kajikawa. T.; Hirao. T. J. Inorg.
Biochem. 2015, 147, 177-180.
36. Lee, J. C.; Park, H. J. Synth. Commun. 2006, 36, 777-780.
37. Zhou; Z. S.; Li, L.; He, X. H., Chin. Chem. Lett. 2012, 23, 1213-1216.
38. Kurosawa, K.; Yamaguchi, K. Bull. Chem. Soc. Jpn. 1981, 54,1757.
39. Zheng, Z.; Han, B.; Cheng, P.; Niu, Ji.; Wang, A. Tetrahedron 2014, 70,
9814-9818.
3. Conclusion
We have developed a convenient one-pot method for the
synthesis of α,α'-dichloro ketones via the oxidation-chlorination
of secondary alcohols using the H2O2-HCl(aq) system in CH3CN.
The molar ratio of hydrogen peroxide and hydrochloric acid are
the key factors for achieving the high selectivity. The advantage
of the H2O2-HCl(aq) system is that α, α'-dichloroketones are
obtained as the only products. At the same time, the peroxidation
reactions characteristic for ketones, e.g. the formation of
peroxides and the Baeyer-Villiger oxidation reaction with the
formation of esters, were not observed.
40. Salama, T. A.; Novak, Z.; Tetrahedron Lett. 2011, 52, 4026.
41. Zhang, X.; Wu, Y.; Zhang Y.; Liu, H.; Xie, Z.; Fu, S.; Liu, F.,
Tetrahedron, 2017, 73, 4513-4518.
Acknowledgments
42. Kim, H. J.; Kim, H. R.; Ryu, E. K. Synth. Commun. 1990, 20, 1625.
43. Vrazic, D.; Jereb, M.; Laali, K.; Stavber, S. Molecules 2013, 18, 74-96.
44. Pravst, I.; Zupan, M.; Stavber, S. Tetrahedron 2008, 64, 5191-5199.
45. Tripathi. C., B.; Mukherjee, S. J. Org. Chem. 2012, 17, 1592.
46. Kim, Y. H.; Lee, I. S.; Lim, S. C. Chem. Lett. 1990, 1125-1128.
47. Tilstam, U.; Weinmann, H. Org. Process Res. Dev. 2002, 6, 384-393.
48. Jing, Y; Daniliuc, C., G.; Studer, A. Org. Lett. 2014, 16, 4932-4935.
49. Shimizu, N.; Matsuno, S.; Tanaka, M.; Tsuno, Y. Bull. Chem. Soc. Jpn.
1992, 65, 971-977.
50. Föhlisch, B.; Kreiselmeier, G. Tetrahedron, 2001, 57, 10077-10088.
51. G. R. Krow, in Organic Reactions; Paquette, L. A., Ed.; John Wiley and
Sons, 1993; Vol. 43, pp 251-798.
52. Michael, R.; Bernard, M., Eur. J. Org. Chem. 1999, 737-750.
53. Yaremenko, I. A. Vil’, V. A. Demchuk, D. V. Terent’ev, A. O. Beilstein
J. Org. Chem. 2016, 12, 1647-1748.
This work was supported by the Russian Science Foundation
(grant № 18-13-00027).
Supplementary Material
Supplementary data (experimental procedures, spectroscopic
data for all of the synthesized compounds) associated with this
article can be found, in the online version, at http://........
References and notes
1. Barhate, N. B.; Gajare, A. S.; Wakharkar, R. D.; Bedekar, A. V.
Tetrahedron, 1999, 55, 11127-11142.
2. Terent’ev, A.; Khodykin, S.; Troitskii, N.; Ogibin, Y.; Nikishin, G.
Synthesis, 2004, 2845-2948.
3. Mukhopadhyay, S.; Chandalia, S. B. Org. Process Res. Dev. 1999, 3, 10-
16.
54. Terent’ev, A. O. Platonov, M. M. Ogibin, Y. N. Nikishin, G. I. Synth.
Commun. 2007, 37, 1281-1287.
55. Žmitek, K.; Zupan, M.; Stavber S.; Iskra, J. Org. Lett. 2006, 8, 2491-
2494.
56. Nikishin, G. I.; Kapustina, N. I.; Sokova, L. L.; Bityukov, O. V.;
Terent’ev, A. O. RSC Adv. 2018, 8, 28632-28636.