Paper
RSC Advances
5
h, indicating that the visible light accelerated protocol can be
5 (a) A. Bermejo, A. Ros, R. Fernandez and J. M. Lassaletta, J.
Am. Chem. Soc., 2008, 130, 15798–15799; (b) G. Liu, F. Han,
C. Liu, H. Wu, Y. Zeng, R. Zhu, X. Yu, S. Rao, G. Huang
and J. Wang, Organometallics, 2019, 38, 1459–1467; (c)
L. M. Zhang, H. Y. Li, H. X. Li, D. J. Young, Y. Wang and
J. P. Lang, Inorg. Chem., 2017, 56, 11230–11243.
used to synthesize binaphthyl compounds.
Conclusions
In summary, a series of bimetallic complexes consisting of
a chromophore and a reaction site were synthesized. The
inuences of the cyclometalated ligand at Ir(III) center on the
photophysical properties and the photocatalytic activity were
demonstrated. Through the regulation of cyclometalated
ligands at Ir(III) center, complex 3 could dramatically accelerate
the Suzuki–Miyaura coupling reaction under a mild condition.
The highly effective absorbing of visible light and appropriate
locus of excited chromophore were proved to facilitate the
photoaccelerated reaction. Mechanism studies show that the
light energy absorbed by Ir(III) fragment produces the excited
chromophore and then undergoes EnT efficiently to the reac-
tion site to form a excited Pd(II) center via the bridging ligand
which could accelerate the catalytic activity of complex. This
study could provide a further exploration of bimetallic
complexes in photocatalyst and a strategy about accelerating
the complexes' catalytic efficiency through modifying their
structures by affecting the photophysical properties and coop-
eration between two metal units.
6
(a) J. Xuan and W. J. Xiao, Angew. Chem., Int. Ed., 2012, 51,
828–6838; (b) M. D. Karkas, J. A. Porco and
C. R. J. Stephenson, Chem. Rev., 2016, 116, 9683–9747; (c)
N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116,
6
1
0075–10166.
(a) W. J. Yoo, T. Tsukamoto and S. Kobayashi, Org. Lett.,
015, 17, 3640–3642; (b) D. R. Heitz, J. C. Tellis and
G. A. Molander, J. Am. Chem. Soc., 2016, 138, 12715–12718;
c) Z. Sun, N. Kumagai and M. Shibasaki, Org. Lett., 2017,
9, 3727–3730; (d) T. Kim, S. McCarver, C. Lee and
D. W. C. MacMillan, Angew. Chem., Int. Ed., 2018, 57, 3488–
492.
7
2
(
1
3
8
9
(a) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem.
Rev., 2013, 113, 5322–5363; (b) K. L. Skubi, T. R. Blum and
T. P. Yoon, Chem. Rev., 2016, 116, 10035–10074; (c) X. Lang,
J. Zhao and X. Chen, Chem. Soc. Rev., 2016, 45, 3026–3038.
(a) F. Wang, C. Li, H. Chen, R. Jiang, L. D. Sun, Q. Li, J. Wang,
J. C. Yu and C. H. Yan, J. Am. Chem. Soc., 2013, 135, 5588–
5
601; (b) S. Sarina, H. Zhu, E. Jaatinen, Q. Xiao, H. Liu,
F. Jia, C. Chen and J. Zhao, J. Am. Chem. Soc., 2013, 135,
793–5801; (c) X. Huang, Y. Li, Y. Chen, H. Zhou, X. Duan
and Y. Huang, Angew. Chem., Int. Ed., 2013, 52, 6063–6067;
d) Q. Xiao, S. Sarina, E. Jaatinen, J. Jia, D. P. Arnold,
Conflicts of interest
5
There are no conicts to declare.
(
H. Liu and H. Zhu, Green Chem., 2014, 16, 4272–4285; (e)
M. Wen, S. Takakura, K. Fuku, K. Mori and H. Yamashita,
Catal. Today, 2015, 242, 381–385; (f) S. Zhang, C. Chang,
Z. Huang, Y. Ma, W. Gao, J. Li and Y. Qu, ACS Catal., 2015,
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21971266) and Guangdong Provincial Key
Platforms and Major Scientic Research Projects of Universities
5
, 6481–6488.
1
1
0 (a) X. H. Li, M. Baar, S. Blechert and M. Antonietti, Sci. Rep.,
(2019KQNCX101).
2
2
013, 3, 1743; (b) X. H. Li and M. Antonietti, Chem. Soc. Rev.,
013, 42, 6593–6604.
1 Z. J. Wang, S. Ghasimi, K. Landfester and K. A. I. Zhang,
Chem. Mater., 2015, 27, 1921–1924.
Notes and references
1
(a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457– 12 (a) Z. Jiao, Z. Zhai, X. Guo and X. Y. Guo, J. Phys. Chem. C,
2
6
483; (b) A. Suzuki, Angew. Chem., Int. Ed., 2011, 50, 6722–
737; (c) J. P. G. Rygus and C. M. Crudden, J. Am. Chem.
2015, 119, 3238–3243; (b) F. Raza, D. Yim, J. H. Park,
H. I. Kim, S. J. Jeon and J. H. Kim, J. Am. Chem. Soc., 2017,
139, 14767–14774.
Soc., 2017, 139, 18124–18137.
2
3
R. Martin and S. L. Buchwald, Acc. Chem. Res., 2008, 41, 13 (a) Y. Chi and P. T. Chou, Chem. Soc. Rev., 2010, 39, 638–665;
461–1473.
(b) Y. You and W. Nam, Chem. Soc. Rev., 2012, 41, 7061–7084.
(a) C. Valente, S. Calimsiz, K. H. Hoi, D. Mallik, M. Sayah and 14 G. Imperato and B. Konig, ChemSusChem, 2008, 1, 993–996.
M. G. Organ, Angew. Chem., Int. Ed., 2012, 51, 3314–3332; (b) 15 K. Mori, M. Kawashima and H. Yamashita, Chem. Commun.,
1
D. Zhang, Y. He and J. Tang, Dalton Trans., 2016, 45, 11699–
2014, 50, 14501–14503.
11709; (c) F. Schroeter, J. Soellner and T. Strassner, 16 Q. Q. Zhou, Y. Q. Zou, L. Q. Lu and W. J. Xiao, Angew. Chem.,
Organometallics, 2018, 37, 4267–4275; (d) D. Shen, Y. Xu
and S. L. Shi, J. Am. Chem. Soc., 2019, 141, 14938–14945.
(a) N. Marion, O. Navarro, J. Mei, E. D. Stevens, N. M. Scott
and S. P. Nolan, J. Am. Chem. Soc., 2006, 128, 4101–4111;
Int. Ed., 2019, 58, 1586–1604.
17 (a) A. Inagaki and M. Akita, Coord. Chem. Rev., 2010, 254,
1220–1239; (b) K. Murata, M. Araki, A. Inagaki and
M. Akita, Dalton Trans., 2013, 42, 6989–7001; (c) K. Murata,
K. Saito, S. Kikuchi and M. Akita, Chem. Commun., 2015,
51, 5717–5720; (d) S. Kikuchi, K. Saito, M. Akita and
A. Inagaki, Organometallics, 2018, 37, 359–366.
4
(
b) B. T. Luo, H. Liu, Z. J. Lin, J. X. Jiang, D. S. Shen,
R. Z. Liu, Z. Ke and F. S. Liu, Organometallices, 2015, 34,
881–4894; (c) X. B. Lan, F. M. Chen, B. B. Ma, D. S. Shen
and F. S. Liu, Organometallics, 2016, 35, 3852–3860.
4
This journal is © The Royal Society of Chemistry 2020
RSC Adv., 2020, 10, 42874–42882 | 42881