Organometallics
Article
exquisitely pyrophoric (and toxic) compounds that present a real
challenge for synthesis and isolation even by experienced chemists. A
simple error in handling, miscalculation, or careless reaction setup can
lead to lab fires and chemical exposure.
(57) Like most hydride reductions, Al−H reagents are incompatible
with many functional groups. Functional group tolerance issues can be
easily predicted based on known literature compatibilities and can be
easily circumvented using well-established protecting groups that
would make these reductions compatible with a well-designed
synthesis that takes these factors into account.
(
intermediate (previously reported as 40−85% pure by P NMR
spectroscopic estimate) for many academically and industrially
31
(58) Farnham, W. B.; Lewis, R. A.; Murray, R. K.; Mislow, K. J. Am.
Chem. Soc. 1970, 92 (19), 5808.
2
3,76−79
(
59) Leonard, J.; Lygo, B.; Procter, G. Advanced Practical Organic
Chemistry, 3rd ed.; CRC Press, 2013.
60) King, R. B.; Cloyd, J. C.; Kapoor, P. N. J. Chem. Soc., Perkin
Trans. 1 1973, 2226.
61) Horner, L.; Hoffmann, H.; Beck, P. Chem. Ber. 1958, 91 (8),
583.
62) Kyba, E. P.; Liu, S. T.; Harris, R. L. Organometallics 1983, 2
12), 1877.
63) Taylor, R. C.; Kolodny, R.; Walters, D. B. Synth. React. Inorg.
Met.-Org. Chem. 1973, 3 (2), 175.
64) Hurtado, M.; Yanez, M.; Herrero, R.; Guerrero, A.; Dav
Z.; Abboud, J.-L. M.; Khater, B.; Guillemin, J.-C. Chem. - Eur. J. 2009,
5 (18), 4622.
65) Kefalidis, C. E.; Perrin, L.; Burns, C. J.; Berg, D. J.; Maron, L.;
Andersen, R. A. Dalton Trans. 2015, 44 (6), 2575.
66) Fieser, L.; Fieser, M. Reagents for Organic Synthesis; Wiley, 1967;
Vol. 1.
valuable ligands.
The isolation of this phosphine grants access
80
to new Buchwald-type ligandsthe synthesis of which would not be
(
feasible with technical grade o-biphenylphosphine.
(
31) When compared to the variety of reagents, catalysts, conditions,
(
1
(
and publications on reducing phosphines, the methodology represents
a consolidation of necessary and new information that is applicable
unilaterally for this chemical transformation.
(
(
(
32) Pesti, J.; Larson, G. L. Org. Process Res. Dev. 2016, 20 (7), 1164.
33) Kovacs, T.; Csatlos, F.; Urbanics, A.; Uhlig, F.; Keglevich, G.
(
́
́
Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191 (11−12), 1597.
34) Engel, R. Handbook of Organophosphorus Chemistry; Marcel
Dekker, 1992.
(
́
́
alos, J.
(
1
(
(
35) Issleib, K.; Bruchlos, H. Z. Anorg. Allg. Chem. 1962, 316 (1−2),
1.
(
36) Naumann, K.; Zon, G.; Mislow, K. J. Am. Chem. Soc. 1969, 91,
(
2
(
788−2789.
37) Busacca, C. A.; Raju, R.; Grinberg, N.; Haddad, N.; James-Jones,
P.; Lee, H.; Lorenz, J. C.; Saha, A.; Senanayake, C. H. J. Org. Chem.
008, 73 (4), 1524.
(67) Sheikh-Osman, A. A.; Bertani, R.; Tapparo, A.; Bombi, G. G.;
Corain, B. J. Chem. Soc., Dalton Trans. 1993, 21, 3229.
2
(
68) Li, J.-N.; Liu, L.; Fu, Y.; Guo, Q.-X. Tetrahedron 2006, 62 (18),
453.
69) Goldwhite, H. Introduction to Phosphorous Chemistry; CUP
Archive, 1981.
70) Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and
Technology, 6th ed.; CRC Press, 2013.
(
38) Wu, H.-C.; Yu, J.-Q.; Spencer, J. B. Org. Lett. 2004, 6 (25), 4675.
4
(
(
39) Henderson, W.; Alley, S. R. J. Organomet. Chem. 2002, 656 (1−
2), 120.
(
40) Li, Y.; Lu, L.-Q.; Das, S.; Pisiewicz, S.; Junge, K.; Beller, M. J.
Am. Chem. Soc. 2012, 134 (44), 18325.
41) Berthod, M.; Favre-Reguillon, A.; Mohamad, J.; Mignani, G.;
Docherty, G.; Lemaire, M. Synlett 2007, 2007 (10), 1545.
42) Li, Y.; Das, S.; Zhou, S.; Junge, K.; Beller, M. J. Am. Chem. Soc.
012, 134 (23), 9727.
43) Mehta, M.; Garcia de la Arada, I.; Perez, M.; Porwal, D.;
Oestreich, M.; Stephan, D. W. Organometallics 2016, 35 (7), 1030.
44) Zhang, T.-X.; Zhang, W.-X.; Luo, M.-M. Chin. Chem. Lett. 2014,
5 (1), 176.
45) Kuroboshi, M.; Kita, T.; Aono, A.; Katagiri, T.; Kikuchi, S.;
Yamane, S.; Kawakubo, H.; Tanaka, H. Tetrahedron Lett. 2015, 56 (7),
18.
(
(
́
(
(
71) Issleib, K.; Ku
72) Henderson, W. A.; Streuli, C. A. J. Am. Chem. Soc. 1960, 82
̈
mmel, R. J. Organomet. Chem. 1965, 3 (1), 84.
(
2
(
(22), 5791.
(73) Allman, T.; Goel, R. G. Can. J. Chem. 1982, 60 (6), 716.
(74) Note that n-pentane has several superior properties as the
extracting solvent: (1) most primary, secondary, and tertiary
phosphines are very soluble in nonpolar hydrocarbons; (2) n-pentane
has a high vapor pressure and is easily removed with gentle heating
and (3) n-pentane azeotropes with both ethanol and methanol (which
are typical contaminates from the reduction to primary and secondary
phosphines, see Figure 3b).
(
2
(
9
(
46) Mallion, K. B.; Mann, F. G. J. Chem. Soc. 1964, 6121.
(
75) A reviewer suggests that AlH is also the reductant generated
3
(
47) Note that LiAlH is metastable and if used as purchased from
4
when using the reducing mixture of LiAlH and Me SiCl. However,
4 3
chemical companies often contains a mixture of Et O-soluble material
2
research has shown that AlH is not the active reductant in these
3
8
1,82
(
LiAlH ) and insoluble materials (Li AlH and other species).
The
4
3
6
́
reactions. See: Herault, D.; Nguyen, D. H.; Nuel, D.; Buono, G. Chem.
insoluble aluminum species likely contribute to the slow reaction rates
and side reactions due to their insoluble and unspecified nature. Pure
LiAlH4 can be purchased as a solution or extracted from the
Soc. Rev. 2015, 44, 2508. Rather, the reductants are Si−H species,
which are capable of reducing aryl substituted tertiary phosphine
oxides and phosphonates. The same reviewer also notes that LiAlH4
8
3
commercially available LiAlH using Et O and recrystallized.
4
2
and Me SiCl can lead to quantitative reductions of phosphine oxides
3
(
48) Higham, L. J.; Clarke, E. F.; Mueller-Bunz, H.; Gilheany, D. G. J.
in multigram amounts in high yields. In fact, these papers pertain to a
narrow subset of phosphines, namely aryl-phosphines that are air-
stable (see ref 20 for further discussion of this point). These
phosphines lack the core properties that the developments of our
manuscript seeks to address: pyrophoricity, toxicity, and volatility.
Organomet. Chem. 2005, 690, 211.
(
(
49) Paddock, N. L. Nature 1951, 167 (4261), 1070.
50) Brown, H. C.; Yoon, N. M. J. Am. Chem. Soc. 1966, 88 (7),
1
464.
51) Yoon, N. M.; Brown, H. C. J. Am. Chem. Soc. 1968, 90 (11),
927.
52) Griffin, S.; Heath, L.; Wyatt, P. Tetrahedron Lett. 1998, 39 (24),
405.
53) Bootle-Wilbraham, A.; Head, S.; Longstaff, J.; Wyatt, P.
Tetrahedron Lett. 1999, 40 (28), 5267.
54) Busacca, C. A.; Lorenz, J. C.; Grinberg, N.; Haddad, N.;
(
2
(
4
(
76) Herrbach, A.; Marinetti, A.; Baudoin, O.; Guen
́ ́
ard, D.; Gueritte,
F. J. Org. Chem. 2003, 68 (12), 4897.
(77) Shekhar, S.; Franczyk, T. S.; Barnes, D. M.; Dunn, T. B.; Haight,
A. R.; Chan, V. S. Phosphine Ligands for Catalytic Reactions. Patent
Appl. WO2012009698 (A1), 2012.
́
(78) Haldon, E.; Kozma, A.; Tinnermann, H.; Gu, L.; Goddard, R.;
́
Alcarazo, M. Dalton Trans. 2016, 45 (5), 1872.
(79) Mehler, G.; Linowski, P.; Carreras, J.; Zanardi, A.; Dube, J. W.;
Alcarazo, M. Chem. - Eur. J. 2016, 22 (43), 15320.
(80) Surry, D. S.; Buchwald, S. L. Chem. Sci. R. Soc. Chem. 2010 2011,
2 (1), 27.
(
(
Hrapchak, M.; Latli, B.; Lee, H.; Sabila, P.; Saha, A.; Sarvestani, M.;
Shen, S.; Varsolona, R.; Wei, X.; Senanayake, C. H. Org. Lett. 2005, 7
(
19), 4277.
(
55) Yoon, N. M.; Gyoung, Y. S. J. Org. Chem. 1985, 50 (14), 2443.
(
56) Winterfeldt, E. Synthesis 1975, 1975, 617.
(81) Graetz, J. ISRN Mater. Sci. 2012, 2012, 863025.
H
Organometallics XXXX, XXX, XXX−XXX