Journal of the American Chemical Society
Page 8 of 10
2233. (b) Hubert, A. J.; Noels, A. F.; Anciaux, A. J.; Teyssié, P.
Synthesis 1976, 600. (c) Demonceau, A.; Noels, A. F.; Hubert, A. J.;
Teyssié, P. J. Chem. Soc. Chem. Commun. 1981, 688.
their sensitivity. The acquired data explain why the reactivity
of this previously unexplored class of intermediates is strongly
correlated with the nature of the halide ligands X; most nota-
bly, the complex derived from [Cp*RhCl2]2 undergoes sponta-
neous migratory insertion of the incipient carbene unit into the
Rh−Cl bond before true carbene reactivity can be harnessed.
This and related results allow a host of preparative data to be
rationalized, and should provide guidance for further explora-
tions of the field.
1
2
3
4
5
6
7
8
(9) For leading studies on Rh(+3) carbenes, see the following and
literature cited therein: (a) Callot, H. J.; Piechocki, Tetrahedron Lett.
1980, 21, 3489. (b) Callot, H. J.; Metz, F.; Piechocki, C. Tetrahedron
1982, 38, 2365. (c) O’Malley, S.; Kodadek, T. Tetrahedron Lett.
1991, 32, 2445. (d) Hayashi, T.; Kato, T.; Kaneko, T.; Asai, T.; Ogo-
shi, H. J. Organomet. Chem. 1994, 473, 323. (e) Lo, V. K.-Y.; Thu,
H.-Y.; Chan, Y.-M.; Lam, T.-L.; Yu, W.-Y. ; Che, C.-M. Synlett
2012, 23, 2753. (f) Franssen, N. M. G.; Finger, M.; Reek, J. N. H.; de
Bruin, B. Dalton Trans. 2013, 42, 4139.
9
(10) Chen, W.-W.; Lo, S.-F.; Zhou, Z.; Yu, W.-Y. J. Am. Chem.
Soc. 2012, 134, 13565.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
(11) (a) Shi, Z.; Koester, D. C.; Boultadakis-Arapinis, M.; Glorius,
F. J. Am. Chem. Soc. 2013, 135, 12204. (b) Hyster, T. K.; Ruhl, K. E.;
Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364. (c) Liang, Y.; Yu, K.;
Li, B.; Xu, S.; Song, H.; Wang, B. Chem. Commun. 2014, 50, 6130.
(d) Jeong, J.; Patel, P.; Hwang, H.; Chang, S. Org. Lett. 2014, 16,
4598. (e) Hu, F.; Xia, Y.; Ye, F.; Liu, Z.; Ma, C.; Zhang, Y.; Wang, J.
Angew. Chem., Int. Ed. 2014, 53, 1364. (f) Ye, B.; Cramer, N. Angew.
Chem., Int. Ed. 2014, 53, 7896. (g) Shi, J.; Yan, Y.; Li, Q.; Xu, H. E.;
Yi, W. Chem. Commun. 2014, 50, 6483. (h) Yang, Y.; Wang, X.; Li,
Y.; Zhou, B. Angew. Chem., Int. Ed. 2015, 54, 15400. (i) Zhou, J.;
Shi, J.; Liu, X.; Jia, J.; Xu, H. E.; Yi, W. Chem. Commun. 2015, 51,
5868. (j) Iagafarova, I. E.; Vorobyeva, D. V.; Peregudov, A. S.; Osi-
pov, S. N. Eur. J. Org. Chem. 2015, 4950. (k) Wang, L.; Li, Z.; Qu,
X.; Peng, W.-M.; Hu, S.-Q.; Wang, H.-B. Tetrahedron Lett. 2015, 56,
6214. (l) Ai, W.; Yang, X.; Wu, Y.; Wang, X.; Li, Y.; Yang, Y.;
Supporting Information. Experimental part including character-
ization data, NMR spectra of new compounds, and supporting
crystallographic information (PDF)
AUTHOR INFORMATION
Corresponding Author
* fuerstner@kofo.mpg.de
ACKNOWLEDGMENT
We thank Mr. S. Größl and Dr. J. Murphy for valuable discus-
sions and the analytical departments of our Institute for excellent
support. Generous financial support by the MPG is gratefully
acknowledged.
Zhou, B. Chem.−Eur. J. 2014, 20, 17653. (m) Zhang, Y.; Zheng, J.;
Cui, S. J. Org. Chem. 2014, 79, 6490. (n) Yu, S.; Liu, S.; Lan, Y.;
Wan, B.; Li, X. J. Am. Chem. Soc. 2015, 137, 1623. (o) Cheng, Y.;
Bolm, C. Angew. Chem., Int. Ed. 2015, 54, 12349. (p) Zhou, B.;
Chen, Z.; Yang, Y.; Ai, W.; Tang, H.; Wu, Y.; Zhu, W.; Li, Y.
Angew. Chem., Int. Ed. 2015, 54, 12121. (q) Lu, Y.-S.; Yu, W.-Y.
Org. Lett. 2016, 18, 1350. (r) Zhang, B.; Li, B.; Zhang, X.; Fan, X.
Org. Lett. 2017, 19, 2294. (s) Halskov, K. S.; Roth, H. S.; Ellman, J.
A. Angew. Chem. 2017, 129, 9311.
REFERENCES
(1) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds: From Cyclo-
propanes to Ylides; Wiley: New York, 1998
(2) Modern Rhodium Catalyzed Organic Reactions; Evans, P. A.,
Ed.; Wiley-VCH: Weinheim, 2005.
(3) (a) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103,
2861. (b) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417. (c)
Davies, H. M. L. ; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. (d)
Davies, H. M. L.; Lian, Y. Acc. Chem. Res. 2012, 45, 923. (e) Davies,
H. M. L.; Antoulinakis, E. G. Org. React. 2001, 57, 1.
(4) (a) Doyle, M. P. Chem. Rev. 1986, 86, 919. (b) Doyle, M. P.;
Forbes, D. C. Chem. Rev. 1998, 98, 911. (c) Doyle, M. P.; Duffy, R.;
Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
(12) (a) 2.5:1 mixture of two isomers 3/3’, see the SI; the major
isomer crystallized from the solution; (b) for a complex similar to 4,
see: Qi, Z.; Yu, S.; Li, X. Org. Lett. 2016, 18, 700.
(13) For applications that likely involve such species, see: (a) Qiu,
L.; Huang, D.; Xu, G.; Dai, Z.; Sun, J. Org. Lett. 2015, 17, 1810. (b)
Ng, F.-N.; Lau, Y.-F.; Zhou, Z.; Yu, W.-Y. Org. Lett. 2015, 17, 1676.
(14) (a) Seidel, G.; Fürstner, A. Angew. Chem., Int. Ed. 2014, 53,
4807. (b) Seidel, G.; Gabor, B.; Goddard, R.; Heggen, B.; Thiel, W.;
Fürstner, A. Angew. Chem., Int. Ed. 2014, 53, 879. (c) Seidel, G.;
Mynott, R.; Fürstner, A. Angew. Chem., Int. Ed. 2009, 48, 2510. (d)
Debrouwer, W.; Fürstner, A. Chem. Eur. J. 2017, 23, 4271. (e)
Fürstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410. (f)
Fürstner, A. Angew. Chem., Int. Ed. 2014, 53, 8587.
(15) (a) Werlé, C.; Goddard, R.; Fürstner, A. Angew. Chem., Int.
Ed. 2015, 54, 15452. (b) Werlé, C.; Goddard, R.; Philipps, P.; Farès,
C. Angew. Chem. Int. Ed. 2016, 55, 10760.
(16) (a) Leutzsch, M.; Wolf, L. M.; Gupta, P.; Fuchs, M.; Thiel,
W.; Farès, C.; Fürstner, A. Angew. Chem. Int. Ed. 2015, 54, 12431.
(b) D.-A. Roşca, K. Radkowski, L. M. Wolf, M. Wagh, R. Goddard,
W. Thiel, A. Fürstner, J. Am. Chem. Soc. 2017, 139, 2443.
(5) (a) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223.
(b) Padwa, A. Chem. Soc. Rev. 2009, 38, 3072.
(6) (a) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. (b)
Taber, D. F.; Stiriba, S.-E. Chem. Eur. J. 1998, 4, 990. (c) Lebel, H.;
Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103,
977. (d) Gois, P. M. P.; Afonso, C. A. M. Eur. J. Org. Chem. 2004,
3773. (e) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577. (f) Zhang,
Y.; Wang, J. Coord. Chem. Rev. 2010, 254, 941. (g) Zhu, S.-F.; Zhou,
Q.-L. Acc. Chem. Res. 2012, 45, 1365. (h) Gillingham, D.; Fei, N.
Chem. Soc. Rev. 2013, 42, 4918. (i) Guo, X.; Hu, W. Acc. Chem. Res.
2013, 46, 2427. (j) Murphy, G. K.; Stewart, C.; West, F. G. Tetrahe-
dron 2013, 69, 2667. (k) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.;
Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981. (l)
DeAngelis, A.; Panish, R.; Fox, J. M. Acc. Chem. Res. 2016, 49, 115.
(7) For the preparation of metal carbenes from substrates other than
diazo derivatives, see: (a) Jia, M.; Ma, S. Angew. Chem. Int. Ed. 2016,
55, 9134. (b) Gulevich, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed.
2013, 52, 1371. (b) Davies, H. M. L.; Alford, J. S. Chem. Soc. Rev.
2014, 43, 5151. (c) Anbarasan, P.; Yadagiri, D. Rajasekar, S.
Synthesis 2014, 46, 3004. (d) Wang, Y.; Lei, X.; Tang, Y. Synlett
2015, 26, 2051. (e) Barluenga, J.; Valdés, C. Angew. Chem., Int. Ed.
2011, 50, 7486. (f) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2012, 41,
560.
(17) Werlé, C.; Goddard, R.; Philipps, P.; Farès, C.; Fürstner, A. J.
Am. Chem. Soc. 2016, 138, 3797.
(18) Review on iridium carbene chemistry, see: (a) Schafer, A. G.;
Blakey, S. B. Chem. Soc. Rev. 2015, 44, 5969. For a recent advance,
see: (b) Weldy, N. M.; Schafer, A. G.; Owens, C. P.; Herting, C. J.;
Varela-Alvarez, A.; Chen, S.; Niemeyer, Z.; Musaev, D.G.; Sigman,
M. S.; Davies, H. M. L.; Blakey, S. B. Chem. Sci. 2016, 7, 3142.
(19) (a) Russel, A. E.; Brekan, J.; Gronenberg, L.; Doyle, M. P. J.
Org. Chem. 2004, 69, 5269. (b) Doyle, M. P.; Hu, W.; Timmons, D. J.
Org. Lett. 2001, 3, 933. (c) Davies, H. M. L.; DeMeese, J.
Tetrahedron Lett. 2001, 42, 6803. For an interesting extension, see:
(d) Padin, D.; Cambeiro, F.; Fananas-Mastral, M.; Varela, J. A.; Saá,
C. ACS Catal. 2017, 7, 992.
(8) For the pioneering work, see: Paulissen, R.; Reimlinger, H.;
Hayez,, E.; Hubert, A. J.; Teyssié, P. Tetrahedron Lett. 1973, 14,
ACS Paragon Plus Environment