Page 3 of 3
ChemComm
Please do not adjust margins
Journal Name
COMMUNICATION
azide 11a was efficiently achieved using a total of 4 conversion to product is observed as soon as the solvent has
DOI: 10.1039/C6CC08574A
equivalents of acid and 8 equivalents of sodium iodide (Entry fully evaporated; typically within 15 minutes. Although other
9). The reaction products could be purified very simply by ion sources of strong acid may be used, the process is
exchange chromatography; the process involving the addition experimentally extremely simple as the ion exchange resin
of more acidic ion exchange resin after the reaction was may then be used to directly purify the product. This highly
complete, and then elution on a column with 2.5 M ammonia practically rapid and clean procedure, which does not require
in MeOH. In the case of reduction of ester 10a (entry 8) it was the use of Lewis acids and/or transition metal salts in addition
found that the intermediate amine spontaneously cyclised to to iodide, may prove a useful addition to the methods of
produce lactam 10b during purification by ion exchange amine synthesis from azides where either functional group
chromatography.
tolerance or product purification hamper the use of more
common processes, such as catalytic hydrogenation or
Staudinger reaction.
Table 3. Reaction Scope
The authors thank the University of Canterbury (PhD
Scholarship to KS) and the Bimolecular Interaction Centre for
financial support.
Entry
1
Substrate
Product
Solvent
MeOH
Yield
/%
O
N3
O
NH2
89
BnO
O
BnO
O
3a
3b
O
O
2
MeOH
93
91
Notes and references
NH
NH
1
S.Bräse, C. Gil, K. Knepper and V. Zimmermann, Angew.
Chem. Int. Ed., 2005, 44, 5188.
a) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B.
Sharpless, Angew. Chem, Int. Ed., 2002, 41, 2596; b) C. W.
Tornøe, C. Christensen and M. Meldal, J. Org. Chem., 2002,
67, 3057.
O
O
O
O
N3
H2N
2
4a
4b
HO
HO
N3
H2N
OH
O
OH
O
3
MeOH
HO
HO
HO
HO
5b
5a
3
4
J. C. Jewett and C. R. Bertozzi, Chem. Soc. Rev., 2010, 39,
1272
a) S. S. van Berkel, M. B. van Eldijk and J. C. M. van Hest,
Angew. Chem. Int. Ed., 2011, 50, 8806; b) B. L. Nilsson, L. L.
Kiessling and R. T. Raines, Org. Lett., 2000, 2, 1939; c) E.
Saxon, J. I. Armstrong and C. R. Bertozzi, Org. Lett., 2000, 2,
2141.
E. Sletten and C. R. Bertozzi, Acc. Chem. Res., 2011, 44, 666.
H. Staudinger and J. Meyer, Helv. Chim. Acta 1919, 2, 635.
a) Y. G. Gololobov, I. N. Zhmurova and L. F. Kasukhin,
Tetrahedron, 1981, 37, 437; b) J. E. Leffler and R. D. Temple,
J. Am. Chem. Soc., 1967, 89, 5235.
E. J. Corey, K. C. Nicolaou, R. D. Balanson and Y. Machida,
Synthesis, 1975, 590, and references contained therein.
a) F. Rolla, J. Org. Chem., 1982, 47, 4327; b) F. Fringuelli, F.
Pizzo and L. Vaccaro, Synthesis, 2000, 646.
OMe
OMe
4
5
CHCl3:
MeOH
3:2
85
95
N3
NH2
6a
6b
SO2N3
SO2NH2
CHCl3:
MeOH
3:2
7b
5
6
7
7a
N3
NH2
O
6
CHCl3:
MeOH
3:2
93
O
BnO
BnO
BnO
BnO
8
9
BnO
BnO
OMe
OMe
8a
8b
N3
NH2
7
8
CHCl3:
MeOH
3:2
87
9
9
10 A. K. Bose, J. F. Kistner and L. Farber, J. Org. Chem., 1962, 27,
2925.
9a
9b
O
O
11 L. Benati, G. Bencivenni, R. Leardini, M. Minozzi, D. Nanni, R.
Scialpi, P. Spagnolo, G. Zanardi and C. Rizzoli, Org. Lett.,
2004, 6, 417 and references contained therein.
12 J. W. Lee and P. Fuchs, Org. Lett., 1999, 1, 179.
13 K. Suthagar, A. J. A. Watson, B. L. Wilkinson and A. J.
Fairbanks, Eur. J. Med. Chem., 2015, 102, 153.
14 D. Horton and A. E. Luetzow, Carbohydr. Res. 1968, 7, 101.
15 A. Kamal, N. Shankaraiah, N. Markandeya and C. S. Reddy,
Synlett, 2008, 1297.
16 a) A. Kamal, B. R. Prasad, A. V.Ramana, A. H. Babu and K. S.
Reddy, Tetrahedron Lett., 2004, 45, 3507; b) A. Kamal, K. V.
Ramana, H. B. Ankati and A. V. Ramana, Tetrahedron Lett.,
2002, 43, 6861; c) D. Pathak, D. D. Laskar, D. Prajapathi and
J. S. Sandhu, Chem. Lett., 2000, 816.
CHCl3:
MeOH
3:2
quant.
N3
MeO
NH
10a
10b
N3
N3
H2N
NH2
9
CHCl3:
MeOH
3:2
92
10
10
11b
11a
N3
NH2
10
CHCl3:
MeOH
3:2
quant.
NO2
NO2
12b
12a
17 G. Bartoli, G. Di Antonio, R. Giovannini, S. Giuli, S. Lanari, M.
Paoletti and E. Marcantoni, J. Org. Chem., 2008, 73, 1919.
18 A. Kamal, N. Markandeya, N. Shankaraiah, C. R. Reddy, S.
Prabhakar, C. S. Reddy, M. N. Eberlin and L. Silva Santos,
Chem. Eur. J., 2009, 15, 7215.
In summary investigation into the formation of an anomalous
reaction product has revealed that organic azides are readily
reduced in polar solvents simply by treatment with four
equivalents of sodium iodide in the presence of two
equivalents of acidic ion exchange resin. The reaction is highly
o
efficient when performed at 40 C and 200 mbar on a rotary
evaporator, due to a concentration effect, and complete
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins