Organic Process Research & Development 2007, 11, 585−591
A Mixed-Ligand Approach Enables the Asymmetric Hydrogenation of an
r-Isopropylcinnamic Acid en Route to the Renin Inhibitor Aliskiren
Jeroen A. F. Boogers,† Ulfried Felfer,‡ Martina Kotthaus,‡ Laurent Lefort,† Gerhard Steinbauer,‡
Andre´ H. M. de Vries,† and Johannes G. de Vries*,†
DSM Pharmaceutical Products - AdVanced Synthesis, Catalysis & DeVelopment, P.O. Box 18, 6160 MD Geleen, The
Netherlands, and DSM Fine Chemicals, Austria Nfg GmbH & Co. KG, St.-Peter-Strasse 25, A-4021 Linz, Austria
Abstract:
ceutical entities are the most important ones. In the mean
time, we have come a long way towards solving these two
major hurdles by the development of cost-effective and
modular synthesized monodentate ligands (MonoPhos)sin
collaboration with the group of Feringa and Minnaard5s
and implementation of high-throughput experimentation
(HTE) techniques,4,6 including the development of methodol-
ogy for automated parallel synthesis of these ligands.6,7 This
parallel protocol, in which 96 new ligands are synthesized
and tested within 2 days, is now routinely used by DSM
Pharmaceutical Products for the screening of customer
requests.
An asymmetric hydrogenation process for the r-isopropyl
dihydrocinnamic acid derivative 2, an intermediate for the renin
inhibitor aliskiren (4), has been developed using a rhodium
catalyst ligated with a chiral monodentate phosphoramidite and
a nonchiral phosphine. Whereas catalysts based on two equiva-
lents of monodentate phosphoramidites gave promising results,
the rate of hydrogenation and ee of the product could be
improved spectacularly by the addition of monodentate non-
chiral triarylphosphines to these catalysts. This remarkable
mixed-ligand catalyst has been identified using high-throughput
experimentation. With the best catalysts turnover numbers
>5000 mol mol-1, turnover frequencies >1000 mol mol-1 h-1
,
During the development of this automated protocol we
were faced with the challenge to find a more cost-effective
catalyst for the asymmetric hydrogenation of the R-isopro-
pylcinnamic acid derivative (1), which is an intermediate in
Novartis’ new blood pressure-lowering agent aliskiren (4),
the first oral renin inhibitor (Scheme 1).8,9 This route to
synthon A (3) with the key asymmetric hydrogenation step
has been developed recently.10 The catalyst is based on a
ferrocene-based bisphosphine ligand called Walphos,11 which
is prepared in five steps from the Ugi amine.10a Although
and ee’s up to 95% have been achieved.
Introduction
Asymmetric hydrogenation is one of the early success
stories of the application of homogeneous catalysis in fine
chemicals production.1 The L-DOPA process that earned
Knowles his Nobel Prize was developed in the early 1970s.2
Yet, in the years after, not many other asymmetric hydro-
genation processes were implemented.3 We and others have
analysed the obstacles that stood between this wonderful
technology and its use in production.3,4 There are several
critical issues involved with asymmetric hydrogenation of
which (i) the overall costs for the catalytic transformations
mainly the metal and the ligand but also the substrate which
may need to be highly puresand (ii) the time-to-market
pressure in the development of processes for new pharma-
(5) (a) van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de
Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000,
122, 11539. (b) van den Berg, M.; Minnaard, A. J.; Haak, R. M.; Leeman,
M.; Schudde, E. P.; Meetsma, A.; Feringa, B. L.; de Vries, A. H. M.;
Maljaars, C. E. P.; Willans, C. E.; Hyett, D.; Boogers, J. A. F.; Henderickx,
H. J. W.; de Vries, J. G. AdV. Synth. Catal. 2003, 345, 308.
(6) (a) de Vries, J. G.; Lefort, L. Chem. Eur. J. 2006, 12, 4722. (b) For a recent
review on high-throughput and parallel screening methods in asymmetric
hydrogenation, see: Ja¨kel, C.; Paciello, R. Chem. ReV. 2006, 106, 2912.
(c) For a review on ligand libraries, see: Gennari C.; Piarulli, U. Chem.
ReV. 2003, 103, 3071.
* To whom correspondence should be addressed. E-mail: Hans-JG.Vries-
† DSM Pharmaceutical Products - Advanced Synthesis, Catalysis & Develop-
ment.
(7) (a) Lefort, L.; Boogers, J. A. F.; de Vries, A. H. M.; de Vries, J. G. Org.
Lett. 2004, 6, 1733. (b) Duursma, A.; Lefort, L.; Boogers, J. A. F.; de Vries,
A. H. M.; de Vries, J. G.; Minnaard, A. J.; Feringa, B. L. Org. Biomol.
Chem. 2004, 2, 1682.
‡ DSM Fine Chemicals, Austria Nfg GmbH & Co. KG.
(1) (a) Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and
Solutions: Blaser, H.-U., Schmidt, E., Eds.; Wiley-VCH: Weinheim, 2004.
(b) de Vries, J. G., Elsevier, C. J., Eds. The Handbook of Homogeneous
Hydrogenation; Wiley-VCH: Weinheim, 2007; Vol. 1-3. (c) Blaser, H.-
U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. AdV. Synth.
Catal. 2003, 345, 103.
(8) (a) Wood, J. M.; Maibaum, J.; Rahuel, J.; Grutter, M. G.; Cohen, N. C.;
Rasetti, V.; Ruger, H.; Go¨schke, R.; Stutz, S.; Fuhrer, W.; Schilling, W.;
Rigollier, P.; Yamaguchi, Y.; Cumin, F.; Baum, H. P.; Schnell, C. R.; Herold,
P.; Mah, R.; Jensen, C.; O’Brien, E.; Stanton, A.; Bedigian, M. P. Biochem.
Biophys. Res. Commun. 2003, 308, 698. (b) Herold, P.; Stutz, S.; Spindler,
F. WO 02/02508, 2002. (c) Herold, P.; Stutz, S. WO 02/08172, 2002. (d)
Go¨schke, R.; Maibaum, J. K.; Schilling, W.; Stutz, S.; Rigollier, P.;
Yamaguchi, Y.; Cohen, N. C.; Herold, P. U.S. Patent 97/5,654,445, 1997.
(9) For other synthesis approaches to aliskiren, see for example: Lindsay, K.
B.; Skrydstrup, T. J. Org. Chem. 2006, 71, 4766 and references therein.
(10) (a) Sturm, T.; Weissensteiner, W.; Spindler, F. AdV. Synth. Catal. 2003,
345, 160. (b) See also: Herold, P.; Stutz, S. WO 02/02500, 2002. (c) Blaser,
H.-U.; Spindler, F.; Thommen, M. In The Handbook of Homogeneous
Hydrogenation; de Vries, J. G., Elsevier, C. J., Eds.; Wiley-VCH: Wein-
heim, 2007; Vol. 3, p 1279.
(2) (a) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.;
Weinkauff, O. J. J. Am. Chem. Soc. 1977, 99, 5946. (b) Knowles, W. S.
Acc. Chem. Res. 1983, 16, 106. (c) Knowles, W. S. Angew. Chem., Int. Ed.
2002, 41, 1998.
(3) (a) Blaser, H.-U.; Pugin, B.; Spindler, F. J. Mol. Catal. A: Chem. 2005,
231, 1. (b) Blaser, H.-U. Chem. Commun. 2003, 293. (c) de Vries, J. G. In
Encyclopedia of Catalysis; Horvath, I. T., Ed.; Wiley: New York, 2003;
Vol. 3, p 295. (d) Blaser, H.-U.; Spindler, H.; Studer, M. Appl. Catal., A
2001, 221, 119.
(4) (a) de Vries, J. G.; de Vries, A. H. M. Eur. J. Org. Chem. 2003, 799. (b)
Hawkins, J. M.; Watson, T. J. N. Angew. Chem., Int. Ed. 2004, 43, 3224.
(11) Weissensteiner, W.; Sturm, T.; Spindler, F. WO 02/02578, 2002.
10.1021/op0602369 CCC: $37.00 © 2007 American Chemical Society
Published on Web 03/10/2007
Vol. 11, No. 3, 2007 / Organic Process Research & Development
•
585