S. Kusaka et al. / Tetrahedron Letters 44 (2003) 8857–8859
8859
of b-alkoxyester followed by cyclization. The
Mukaiyama–Corey method14 (2,2%-dipyridyl disulfide,
PPh3), provided the desired lactone 14, however in
disappointingly low yield. Extensive optimization of the
Mukaiyama method increased the yield of the desired
lactone 14 up to 40%. Addition of Ag-salt was crucial
to activate the pyridinium thioester intermediate.14
Finally, deprotection of the MEM group with TFA in
CH2Cl2 furnished 1 in 92% yield. The synthetic 1
Kumar, G. B.; Kurachi, T.; Acharya, H. P.; Yamazaki,
T.; Kitazume, T. J. Org. Chem. 2001, 66, 2011–2018; (c)
Kobayashi, Y.; Achaarya, H. P. Tetrahedron Lett. 2001,
42, 2817–2820; (d) Kobayashi, Y.; Wang, Y.-G. Tetra-
hedron Lett. 2002, 43, 4381–4384.
6. (a) Ono, M.; Nakamura, H.; Konno, F.; Akita, H. Tetra-
hedron: Asymmetry 2000, 11, 2753–2764; (b) Nakamura,
H.; Ono, M.; Shiba, Y.; Akita, H. Tetrahedron: Asymme-
try 2002, 13, 705–713; (c) Nakamura, H.; Ono, M.;
Makino, M.; Akita, H. Heterocycles 2002, 57, 327–336;
(d) Akita, H.; Nakamura, H.; Ono, M. Chirality 2003, 15,
352–359.
1
exhibited H and 13C NMR spectral data as well as
optical rotation identical to those published for the
natural product1b (Scheme 3).
7. Sharma, G. V. M.; Mouli, C. C. Tetrahedron Lett. 2002,
43, 9159–9161.
In summary, the total synthesis of macrosphelide A has
been achieved with a highly convergent and efficient
strategy. Further refinement of the synthetic scheme
toward the synthesis of combinatorial library of its
analogues will be reported.
8. (a) Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org.
Chem. 1974, 39, 3318–3326; (b) Schoenberg, A.; Heck, R.
F. J. Org. Chem. 1974, 39, 3327–3331; (c) Hidai, M.;
Hikata, T.; Wada, Y.; Fujikura, Y.; Uchida, Y. Bull.
Chem. Soc. Jpn. 1975, 48, 2075–2077; (d) Ito, T.; Mori,
K.; Mizoroki, T.; Ozaki, A. Bull. Chem. Soc. Jpn. 1975,
48, 2091–2094; (e) Stille, J. K.; Wong, P. K. J. Org.
Chem. 1975, 40, 532–534.
Acknowledgements
This work was supported by a Grant-In-Aid from the
Ministry of Education, Culture, Sports, Science and
Technology, Japan (No. 14103013). We also thank
Professors Satoshi Omura and Toshiaki Sunazuka
(Kitasato University, Japan) for fruitful discussion.
9. (a) Takahashi, T.; Nagashima, T.; Tsuji, J. Chem. Lett.
1980, 369–372; (b) Takahashi, T.; Ikeda, H.; Tsuji, J.
Tetrahedron Lett. 1980, 21, 3885–3888.
10. (a) Evans, D. A.; Allison, B. D.; Yang, M. G.; Masse, C.
E. J. Am. Chem. Soc. 2001, 123, 10840–10852; (b) Evans,
D. A.; Allison, B. D.; Yang, M. G. Tetrahedron Lett.
1999, 40, 4457–4460; (c) Evans, D. A.; Halstead, D. P.;
Allison, B. D. Tetrahedron Lett. 1999, 40, 4461–4462.
11. (a) Zhang, H. X.; Guibe, F.; Balavoine, G. J. Org. Chem.
1990, 55, 1857–1867; (b) Smith, N. D.; Mancuso, J.;
Lautens, M. Chem. Rev. 2000, 100, 3257–3282.
12. Carbonylative esterification was carried out as follows:
To a solution of vinyl iodide (0.50 mmol) and alcohol
(1.50 mmol) in DMF (5.0 ml) was added Et3N (0.55
mmol), DMAP (0.05 mmol), and PdCl2(MeCN)2 (0.05
mmol) under an argon. The vessel was placed in an
autoclave, which was purged with CO three times before
applying a pressure of 30 atm. After stirring at room
temperature for 6 h, the catalyst was deposited through a
short florisil plug. The filtrate was partitioned between
EtOAc and 1 M HCl. The organic layer was washed with
saturated aqueous NaHCO3 and brine, dried over
MgSO4, and concentrated in vacuo. Column chromatog-
raphy on silica gel afforded the product.
13. (a) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.;
Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989–
1993; (b) Boden, E. P.; Keck, G. E. J. Org. Chem. 1985,
50, 2394–2395; (c) Mitsunobu, O. Synthesis 1981, 1–28.
14. (a) Mukaiyama, T.; Usui, M.; Saigo, K. Chem. Lett.
1976, 49–50; (b) Corey, E. J.; Brunelle, D. J.; Stork, P. J.
Tetrahedron Lett. 1976, 17, 3405–3408; (c) Corey, E. J.;
Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96, 5614–5616;
(d) Buszek, K. R.; Sato, N.; Jeong, Y. J. Am. Chem. Soc.
1994, 116, 5511–5512.
References
1. (a) Hayashi, M.; Kim, Y.-P.; Hiraoka, H.; Natori, M.;
Takamatsu, S.; Kawakubo, T.; Masuma, R.; Komiyama,
K.; Omura, S. J. Antibiot. 1995, 48, 1435–1439; (b)
Takamatsu, S.; Kim, Y.-P.; Hayashi, M.; Hiraoka, H.;
Natori, M.; Komiyama, K.; Omura, S. J. Antibiot. 1996,
49, 95–98; (c) Takamatsu, S.; Hiraoka, H.; Kim, Y.-P.;
Hayashi, M.; Natori, M.; Komiyama, K.; Omura, S. J.
Antibiot. 1997, 50, 878–880; (d) Fukami, A.; Taniguchi,
Y.; Nakamura, T.; Rho, M.-C.; Kawaguchi, K.; Hayashi,
M.; Komiyama, K.; Omura, S. J. Antibiot. 1999, 52,
501–504.
2. (a) Numata, A.; Iritani, M.; Yamada, T.; Minoura, K.;
Matsumura, E.; Yamori, T.; Tsuruo, T. Tetrahedron Lett.
1997, 38, 8215–8218; (b) Yamada, T.; Iritani, M.; Doi,
M.; Minoura, K.; Ito, T.; Numata, A. J. Chem. Soc.,
Perkin Trans. 1 2001, 3046–3053; (c) Yamada, T.; Iritani,
M.; Minoura, K.; Numata, A.; Kobayashi, Y.; Wang,
Y.-G. J. Antibiot. 2002, 55, 147–154.
3. Sunazuka, T.; Hirose, T.; Harigaya, Y.; Takamatsu, S.;
Hayashi, M.; Komiyama, K.; Omura, S.; Sprengeler, P.
A.; Smith, A. B., III J. Am. Chem. Soc. 1997, 119,
10247–10248.
4. Fukami, A.; Iijima, K.; Hayashi, M.; Komiyama, K.;
Omura, S. Biochem. Biophys. Res. Commun. 2002, 291,
1065–1070.
5. (a) Kobayashi, Y.; Kumar, G. B.; Kurachi, T. Tetra-
hedron Lett. 2000, 41, 1559–1563; (b) Kobayashi, Y.;