Communication
ChemComm
3
a,23a
LUMO that is 0.19 eV lower in comparison to PolyS-cumenyl.
The larger value of E obtained by CV compared to UV-Vis is a
6 (a) G. He, B. D. Wiltshire, P. Choi, A. Savin, S. Sun, A. Mohammadpour,
M. J. Ferguson, R. McDonald, S. Farsinezhad, A. Brown, K. Shankar and
E. Rivard, Chem. Commun., 2015, 51, 5444–5447; (b) W. Torres Delgado,
C. A. Braun, M. P. Boone, O. Shynkaruk, Y. Qi, R. McDonald,
M. J. Ferguson, P. Data, S. K. C. Almeida, I. de Aguiar, G. L. C. de Souza,
A. Brown, G. He and E. Rivard, ACS Appl. Mater. Interfaces, 2018, 10,
g
23b
common observation for polychalcogenophenes. As a final point,
polymer degradation was noted upon repeated cycling (Fig. S47,
3
a
ESI†), likely due to the formation of reactive radicals.
12124–12134; (c) E. Hupf, Y. Tsuchiya, W. Moffat, L. Xu, M. Hirai, Y. Zhou,
In conclusion, readily available pinacolboronate (BPin)-
substituted tellurophenes were used for the synthesis of new
tellurophene oligomers and polymers. The effect of the cyclo-
alkyl substituents in Oligo-Te5 and Oligo-Te6 was examined
by theory and experiment, revealing that the less hindered
M. J. Ferguson, R. McDonald, T. Murai, G. He and E. Rivard, Inorg. Chem.,
2019, 58, 13323–13336.
7
8
9
R. D. Pensack, Y. Song, T. M. McCormick, A. A. Jahnke, J. Hollinger,
D. S. Seferos and G. D. Scholes, J. Phys. Chem. B, 2014, 118, 2589–2597.
L. Yang, W. Gu, L. Lv, Y. Chen, Y. Yang, P. Ye, J. Wu, L. Hong,
A. Peng and H. Huang, Angew. Chem., Int. Ed., 2018, 57, 1096–1102.
B. T. Luppi, D. Majak, M. Gupta, E. Rivard and K. Shankar, J. Mater.
Chem. A, 2019, 7, 2445–2463.
5-membered side groups in Oligo-Te5 yields a substantially
more planar backbone and a large reduction in E . The first
g
10 S. Ye, M. Steube, E. I. Carrera and D. S. Seferos, Macromolecules,
2016, 49, 1704–1711.
1 (a) W. Torres Delgado, F. Shahin, M. J. Ferguson, R. McDonald,
G. He and E. Rivard, Organometallics, 2016, 35, 2140–2148; (b) C. A.
Braun, N. Martinek, Y. Zhou, M. J. Ferguson and E. Rivard, Dalton
Trans., 2019, 48, 10210–10219.
2 For related studies, see: (a) B. Jiang and T. D. Tilley, J. Am.
Chem. Soc., 1999, 121, 9744–9745; (b) S. M. Parke, E. Hupf, G. K.
Matharu, I. de Aguiar, L. Xu, H. Yu, M. P. Boone, G. L. C. de Souza,
R. McDonald, M. J. Ferguson, G. He, A. Brown and E. Rivard, Angew.
Chem., Int. Ed., 2018, 57, 14841–14846; (c) S. Das and S. S. Zade,
Chem. Commun., 2010, 46, 1168–1170.
3 (a) K. Ohshimizu, A. Takahashi, Y. Rho, T. Higashihara, M. Ree and
M. Ueda, Macromolecules, 2011, 44, 719–727; (b) For examples of
monomeric (unpolymerized) 3-aryltellurophenes, see: V. Krishna
Karapala, H.-P. Shih and C.-C. Han, Org. Lett., 2018, 20, 1550–1554.
4 (a) I. Osaka and R. D. McCullough, Acc. Chem. Res., 2008, 41,
1202–1214; (b) M. A. Baker, C.-H. Tsai and K. J. T. Noonan,
Chem. – Eur. J., 2018, 50, 13078–13088.
poly(3-aryltellurophene) PolyTe-cumenyl was also synthesized,
1
showing high degree of regioregularity (94%) and small E
g
(1.30 eV, onset of absorption at ca. 1000 nm). The corresponding
3-arylated polythiophene PolyS-cumenyl also yields a smaller E
g
1
when compared to the ubiquitous poly(3-alkylthiophene), thus
chalcogenophene-bound aryl groups can yield advantageous
optoelectronic properties in the solid state. The polymer design
concepts introduced herein should be of great value to those
seeking new optoelectronic materials with thermal stability and
1
2
4
narrow optical band gaps.
This work was supported by NSERC (Discovery Grants to
E. R. and L. S., CREATE (ATUMS) to B. L. and E. R.) as well as
the University of Alberta Future Energy Systems (FES), Compute
Canada and WestGrid. Dr William Torres Delgado, Dr Emanuel
Hupf, Wayne Moffat, Jennifer Jones and Jing Zheng are thanked
for their valuable assistance.
1
1
5 T. Yamamoto, A. Morita, Y. Miyazaki, T. Maruyama, H. Wakayama,
Z.-h. Zhou, Y. Nakamura, T. Kanbara, S. Sasaki and K. Kubota,
Macromolecules, 1992, 25, 1214–1223.
1
1
1
6 C. Thiebes, G. K. Surya Prakash, N. A. Petasis and G. A. Olah, Synlett,
1
998, 141–142.
7 M. Kitano, T. Tanaka and A. Osuka, Organometallics, 2017, 36,
559–2564.
Conflicts of interest
2
8 Both I-Te-5-I and I-Te-6-I yield oligomers (n r 4) over time.†
The authors declare no conflict of interest.
This process takes months for I-Te-6-I but only days for I-Te-5-I.
2,5-Dibromoselenophenes are known to undergo the same process
References
in the solid state: A. Patra, Y. H. Wijsboom, S. S. Zade, M. Li,
Y. Sheynin, G. Leitus and M. Bendikov, J. Am. Chem. Soc., 2008, 130,
6734–6736.
1
2
E. I. Carrera and D. S. Seferos, Macromolecules, 2015, 48, 297–308.
(a) S. M. Parke, M. P. Boone and E. Rivard, Chem. Commun., 2016, 19 S. S. Zade and M. Bendikov, Chem. – Eur. J., 2007, 13, 3688–3700.
2, 9485–9505, and references therein; (b) G. C. Hoover and 20 (a) PolyTe-cumenyl absorbs strongly at the wavelength used for
5
D. S. Seferos, Chem. Sci., 2019, 10, 9182–9188.
(a) A. A. Jahnke, B. Djukic, T. M. McCormick, E. Buchaca Domingo,
C. Hellmann, Y. Lee and D. S. Seferos, J. Am. Chem. Soc., 2013, 135,
light scattering detection (670 nm), thus molecular weights were
determined with refractive index detectors; (b) The optical E of
PolyTe-cumenyl film was determined by the onset of absorption
(1.30 eV) and by Gaussian fit (1.50 eV)†.
3
g
9
51–954; (b) G. He, L. Kang, W. Torres Delgado, O. Shynkaruk,
M. J. Ferguson, R. McDonald and E. Rivard, J. Am. Chem. Soc., 2013, 21 The regioselectivity of the initial C–I metallation step was verified
i
1
35, 5360–5363; (c) L. Lv, X. Wang, X. Wang, L. Yang, T. Dong,
Z. Yang and H. Huang, ACS Appl. Mater. Interfaces, 2016, 8,
4620–34629; (d) M. Al-Hashimi, Y. Han, J. Smith, H. S. Bazzi,
for both I-S-cumenyl-I and I-Te-cumenyl-I by adding PrMgClꢁLiCl,
followed by quenching by HCl, and analysis of the product(s) by
1
3
H NMR spectroscopy.
S. Y. A. Alqaradawi, S. E. Watkins, T. D. Anthopoulos and M. Heeney, 22 For additional leading reviews on this topic, see: (a) K. Okamoto and
Chem. Sci., 2016, 7, 1093–1099.
(a) S. Ye, L. Janasz, W. Zajaczkowski, J. G. Manion, A. Mondal,
T. Marszalek, D. Andrienko, K. M u¨ lllen, W. Pisula and D. S. Seferos,
Macromol. Rapid Commun., 2019, 40, 1800596; (b) W. Xing, P. Ye, 23 (a) A. Patra, Y. H. Wijsboom, G. Leitus and M. Bendikov, Org. Lett.,
J. Lu, X. Wu, Y. Chen, T. Zhu, A. Peng and H. Huang, J. Power
Sources, 2018, 401, 13–19.
G. He, W. Torres Delgado, D. J. Schatz, C. Merten, A. Mohammadpour,
L. Mayr, M. J. Ferguson, R. McDonald, A. Brown, K. Shankar and
E. Rivard, Angew. Chem., Int. Ed., 2014, 53, 4587–4591.
C. K. Luscombe, Polym. Chem., 2011, 2, 2424–2434; (b) J. P. Lutz,
M. D. Hannigan and A. J. McNeil, Coord. Chem. Rev., 2018, 376,
225–247.
4
5
2009, 11, 1487–1490; (b) T. Johansson, W. Mammo, M. Svensson,
M. R. Andersson and O. Ingan ¨a s, J. Mater. Chem., 2003, 13, 1316–1323;
(c) Y. Li, Y. Cao, J. Gao, D. Wang, G. Yu and A. J. Heeger, Synth. Met.,
1999, 99, 243–248.
24 S. R u¨ hle, Sol. Energy, 2016, 130, 139–147.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 14218--14221 | 14221