J. Am. Chem. Soc. 1998, 120, 12355-12356
Scheme 1
12355
Highly Endo- and Enantioselective Asymmetric
Nitrone Cycloadditions Catalyzed by the Aqua
Complex of 4,6-Dibenzofurandiyl-2,2′-bis(4-phenyl-
oxazoline)-Nickel(II) Perchlorate. Transition
Structure Based on Dramatic Effect of MS 4A on
Selectivities
Shuji Kanemasa,* Yoji Oderaotoshi,† Junji Tanaka, and
Eiji Wada
Institute of AdVanced Material Study, Kyushu UniVersity,
Kasugakoen, Kasuga 816-8580, Japan
ReceiVed June 29, 1998
1,3-Dipolar cycloaddition to alkene dipolarophiles is now the
most useful method to make many stereochemically defined five-
membered heterocycles.1 Although a variety of diastereoselective
1,3-dipolar cycloadditions have been developed, enantioselective
versions are still limited.2 Nitrones3 are important 1,3-dipoles
that have been the target of catalyzed enantioselective reactions.
Three different approaches to catalyzed enantioselective reactions
have been taken: (1) activation of electron-deficient alkenes by
a chiral Lewis acid,4-8 (2) activation of nitrones in the reaction
with ketene acetals,9 and (3) coordination of both nitrones and
allylic alcohols on a chiral catalyst.10 Among these approaches,
the dipole/HOMO controlled reactions of electron-deficient al-
kenes such as N-alkenoyl-2-oxazolidinones or N-alkenoylsuccini-
mides4b are especially promising because a variety of combina-
tions between chiral Lewis acids and electron-deficient alkenes
have been investigated in the study of catalyzed enantioselective
Diels-Alder reactions. Enantioselectivities in catalyzed nitrone
cycloadditions sometimes exceed 90% ee, but the efficiency of
catalytic loading remains insufficient.
In the present communication, we report asymmetric 1,3-dipolar
cycloadditions of nitrones to 3-(2-alkenoyl)-2-oxazolidinones
catalyzed by the aqua complex derived from (R,R)-4,6-dibenzo-
furandiyl-2,2′-bis(4-phenyloxazoline) ligand (R,R-DBFOX/Ph)11
and Ni(ClO4)2‚6H2O.
In the presence of 10 mol % of the anhydrous nickel catalyst
1 (Ln ) none),12 which can be prepared in situ from (R,R)-
DBFOX/Ph ligand, NiBr2, and two equimolar amounts of Ag-
ClO4,13 the reaction of 3-crotonoyl-2-oxazolidinone (2a) with
N-benzylidenemethylamine N-oxide (3a) produces 3,4-trans-
isoxazolidine 4a in near perfect endo selectivity (endo:exo ) 99:
1) and enantioselectivity for the 3S,4R,5S enantiomer (>99% ee
for the endo isomer, Scheme 1 and Table 1, entry 1). The aqua
nickel complex 1 (Ln ) H2O), which can be simply prepared in
situ by stirring equimolar amounts of the (R,R)-DBFOX/Ph ligand
and Ni(ClO4)2‚6H2O in dichloromethane for a few hours, gives a
comparable result in a similar reaction in the presence of MS 4A
(entry 2). The simple preparation procedure of the aqua catalyst
should be attractive.
The presence of MS 4A is essential to attain high selectivities,
especially in the reactions catalyzed by the aqua complex. In
the absence of MS 4A, the endo selectivity and enantioselectivity
for 3,4-trans-isoxazolidines are both lowered.14 Jørgensen was
the first to observe a dramatic effect of MS 4A in Lewis acid-
catalyzed nitrone cycloadditions.5 In his reaction, the chemical
yield of the cycloadduct was not affected by the absence of MS
4A, but the endo selectivity was lowered (endo:exo, from 92:8
to 65:35) and the enantioselectivity almost disappeared (79 to
2% ee).15 Our results are comparable. Although the role of MS
4A cannot yet be fully explained,16 it certainly works as
dehydrating agent. In a reaction catalyzed by the aqua nickel
complex 1 (Ln ) H2O), anhydrous magnesium sulfate can replace
MS 4A, but the reaction becomes a little slower (entry 8).
Reactions of other nitrones 3b-f (entries 3-11) are also
diastereoselective (endo:exo g 95:5) and enantioselective for
endo-4b-f (higher than 95% ee for 4a,b,d,f and 89% ee for 4c,e).
High efficiency of the catalytic cycle can be demonstrated in the
† Department of Molecular Science and Technology, Interdisciplinary
Graduate School of Engineering Sciences, Kyushu University, Kasugakoen,
Kasuga 816-8580, Japan.
(1) 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; John Wiley &
Sons: New York, 1984.
(2) Gothelf, K. V.; Jørgensen, K. A. Chem. ReV. 1998, 98, 863-909.
(3) (a) Breuer, E.; Aurich, H. G.; Nielsen, A. Nitrones, Nitronates and
Nitroxides; Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: Chichester,
UK, 1989; Chapters 2 and 3, pp 139-312. (b) Tufariello, J. J. 1,3-Dipolar
Cycloaddition Chemistry; Padwa, A., Ed.; John Wiley & Sons: New York,
1984; Vol. 9, pp 83-168.
(11) (a) Kanemasa, S.; Oderaotoshi, Y.; Yamamoto, H.; Tanaka, J.; Wada,
E.; Curran, D. P. J. Org. Chem. 1997, 62, 6454-6455. (b) Kanemasa, S.;
Oderaotoshi, Y.; Sakaguchi, S.; Yamamoto, H.; Tanaka, J.; Wada, E.; Curran,
D. P. J. Am. Chem. Soc. 1998, 120, 3074-3088.
(12) DBFOX/Ph complexes of iron(II), zinc(II), and magnesium perchlo-
rates show satisfactory selectivities in the reactions of 2 with nitrone 3c at
room temperature in the presence of MS 4A: DBFOX/Ph‚Fe(ClO4)2 (10 mol
%) 69%, endo:exo ) 95:5, >99% ee for endo isomer; DBFOX/Ph‚Zn(ClO4)2
(10 mol %) 100%, endo:exo ) 94:6, 86% ee for endo isomer; DBFOX/Ph‚
Mg(ClO4)2 (10 mol %) 100%, endo:exo ) 75:25, 86% ee for endo isomer.
(13) Although the resulting AgBr can be removed with the aid of a syringe
filter, this filtration procedure is not necessary. Equivalent selectivities result
without filtration procedure.
(14) The iron complex catalyzed reaction shown in ref 12 in the absence
of MS 4A gives lower selectivities (endo:exo ) 68:32, 21% ee for endo isomer
endo-4a).
(15) The reaction of N-benzylideneaniline N-oxide with 3-crotonoyl-2-
oxazolidinone in the presence of catalyst (10 mol %) prepared from
isopropylidene-2,2′-bis(4-phenyloxazoline) and MgI2/I2 at room temperature
for 24 h.
(4) (a) Jensen, K. B.; Gothelf, K. V.; Jørgensen, K. A. HelV. Chim. Acta
1997, 80, 2039-2046. (b) Jensen, K. B.; Gothelf, K. V.; Hazell, R. G.;
Jørgensen, K. A. J. Org. Chem. 1997, 62, 2471-2477. (c) Gothelf, K. V.;
Jørgensen, K. A. Acta Chem. Scand. 1996, 50, 652-660. (d) Gothelf, K. V.;
Thomsen, I.; Jørgensen, K. A. J. Am. Chem. Soc. 1996, 118, 59-64. (e)
Gothelf, K. V.; Jørgensen, K. A. J. Org. Chem. 1994, 59, 5687-5991.
(5) Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 1996,
61, 346-355. They have recently reported a paper discussing the role of MS
4A: Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 1998, 63,
5483-5488.
(6) Sanchez-Blanco, A. I.; Gothelf, K. V.; Jørgensen, K. A. Tetrahedron
Lett. 1997, 38, 7923-7926.
(7) Hori, K.; Kodama, H.; Ohta, T. Furukawa, I. Tetrahedron Lett. 1996,
37, 5947-5950.
(8) (a) Kobayashi, S.; Kawamura, M. J. Am. Chem. Soc. 1998, 120, 5840-
5841. (b) Kobayashi, S.; Akiyama, R.; Kawamura, M.; Ishitani, H. Chem.
Lett. 1997, 1039-1040.
(9) (a) Seerden, J.-P. G.; Boeren, M. M. M.; Scheeren, H. W. Tetrahedron
1997, 53, 11843-11852. (b) Seerden, J. P. G.; Scholte op Reimer, A. W. A.;
Scheeren, H. W. Tetrahedron Lett. 1994, 35, 4419-4422.
(10) Ukaji, Y.; Taniguchi, K.; Sada, K.; Inomata, K. Chem. Lett. 1997,
547-548.
(16) Many examples are known for the effect of MS 4A in Lewis acid-
catalyzed asymmetric reactions: (a) Posner, G. H.; Dai, H. Y.; Bull, D. S.;
Lee, J. K.; Eydoux, F.; Ishihara, Y.; Welsh, W.; Pryor, N. J. Org. Chem.
1996, 61, 671-676. (b) Mikami, K.; Motoyama, Y.; Terada, M. J. Am. Chem.
Soc. 1994, 116, 2812-2820 and references therein.
10.1021/ja982254e CCC: $15.00 © 1998 American Chemical Society
Published on Web 11/11/1998