Angewandte Chemie International Edition
10.1002/anie.201911404
RESEARCH ARTICLE
pleasingly demonstrating the recyclabillity and reuse of these gel Acknowledgements
beads.
We tested the Pd-leaching from these beads (ESI Section
S11) and found some palladium was leached into the solvent
during reaction. At the end of reaction, if the solution was
removed from the bead and charged with different Suzuki reaction
substrates, then the second Suzuki reaction would proceed to
We thank EPSRC for funding (EP/P03361X/1) and Meg Stark
(
Bioscience Technology Facility, Department of Biology,
University of York) for SEM and TEM imaging. PS acknowledges
the Experientia Foundation and University of York (Pump Priming
Funding) for a research fellowship.
>90%, even in the absence of the bead. Leaching is greater than
from our previously reported agarose hybrid hydrogels (34%
Suzuki coupling achieved using the filtrate).[25] We suggest this
results from Pd in the alginate shell being less effectively-bound,
and the greater relative surface area of the small beads used here.
Nonetheless, a significant amount of Pd is clearly retained within
the beads, because, as described above, they can be reused in
the reaction 5 times (an overall molar ratio of catalyst:reagent =
Keywords: catalysis • gel • self-assembly • supramolecular
[
1]
2]
a) R. G. Weiss, J. Am. Chem. Soc., 2014, 136, 7519-7530. b) E. R.
Draper, D. J. Adams, Chem, 2017, 3, 390-410.
[
a) N. M. Sangeetha, U. Maitra, Chem. Soc. Rev., 2005, 34, 821–836. b)
A. R. Hirst, B. Escuder, J. F. Miravet, D. K. Smith, Angew. Chem. Int. Ed.,
2008, 47, 8002–8018. c) X. Du, J. Zhou, J. Shi, B. Xu, Chem. Rev., 2015,
1
15, 13165-13307. d) B. O. Okesola, D. K. Smith, Chem. Soc. Rev. 2016,
5, 4226-4251. e) B. Hu, C. Owh, P. L. Chee, W. R. Leow, X. Liu, Y.
1
:10000), and the gel beads can definitely be considered as the
4
source of Pd required for reaction.
L. Wu, P. Guo, X. J. Loh, X. Chen, Chem. Soc. Rev. 2018, 47, 6917-
929. f) D. K. Smith in Molecular Gels: Structure and Dynamics, Ed. R.
Overall, it is evident the LMWG retains its fundamental Pd
remediation and catalysis properties within these shaped and
structured core-shell beads. As such, this fabrication method is a
very simple way of imposing shape onto an active and functional
self-assembled gelator. The core-shell hybrid gel beads are a
straightforward and efficient dosing form for these catalytic gels –
one single bead can be placed into the reaction vessel to facilitate
the Suzuki-Miyaura cross coupling and the product easily
extracted. This would therefore be an effective way of supplying
catalytic gels in a simple physical form, which is easy for the end-
user to employ in synthesis. This clearly demonstrates the
advantage of combining a functional LMWG with a PG that plays
the role of imposing defined shape and structure onto the overall
system.
6
G. Weiss, Royal Society of Chemistry, Cambridge, 2018, pp 300-371
P. R. A. Chivers, D. K. Smith, Nat. Rev. Mater., 2019, 4, 463-478.
B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, N. A.
Peppas, Adv. Mater., 2009, 21, 3307-3329.
[
[
3]
4]
[5]
K. J. Skilling, F. Citossi, T. D. Bradshaw, M. Ashford, B. Kellam, M.
Marlow, Soft Matter, 2014, 10, 237-256.
[
[
6]
7]
A. Zhang, C. M. Lieber, Chem. Rev., 2016, 116, 215-257.
a) J. Eastoe, M. Sánchez-Dominguez, P. Wyatt, R. K. Heenan, Chem.
Commun., 2004, 2608–2609. b) J. J. D. de Jong, P. R. Hania, A. Pugžlys,
L. N. Lucas, M. de Loos, R. M. Kellogg, B. L. Feringa, K. Duppen, J. H.
van Esch, Angew. Chem. Int. Ed., 2005, 44, 2373–2376. c) S. Matsumoto,
S. Yamaguchi, S. Ueno, H. Komatsu, M. Ikeda, K. Ishizuka, Y. Iko, K. V.
Tabata, H. Aoki, S. Ito, H. Noji, I. Hamachi, Chem. Eur. J. 2008, 14,
3977–3986. d) D. J. Cornwell, B. O. Okesola, D. K. Smith, Angew. Chem.
Int. Ed., 2014, 53, 12461–12465. e) E. R. Draper, E. G. B. Eden, T. O.
McDonald, D. J. Adams, Nat. Chem., 2015, 7, 848–852. f) P. R. A.
Chivers, D. K. Smith, Chem. Sci., 2017, 8, 7218-7227.
In conclusion, we report spatial control over LMWG assembly
by combining a LMWG (DBS-CONHNH
form spherical core-shell gel bead structures (or worms).
Combining alginate with DBS-CONHNH enhances thermal
stability and rheological performance. The mechanical properties
of the hybrid gel can be tuned by alginate concentration, giving
gels with a range of stiffnesses, and optimisable strain resistance,
suggesting potential applications in (e.g.) cell culture. The LMWG
2
) and a PG (alginate) to
[
8]
a) Q. Wei, M. Xu, C. Liao, Q. Wu, M. Liu, Y. Zhang, C. Wu, L. Cheng, Q.
Wang, Chem. Sci., 2016, 7, 2748–2752. b) M. C. Nolan, A. M. Fuentes
Caparrós, B. Dietrich, M. Barrow,E. R. Cross, M. Bleuel, S. M. King, D.
J. Adams, Soft Matter, 2017, 13, 8426-8432.
2
[9]
J. Raeburn, B. Alston, J. Kroeger, T. O. McDonald, J. R. Howse, P. J.
Cameron, D. J. Adams, Mater. Horiz., 2014, 1, 241–246.
[
10] a) R. J. Williams, A. M. Smith, R. Collins, N. Hodson, A. K. Das, R. V,
Ulijn, Nat. Nanotechnol., 2009, 4, 19–24. b) A. G. L. Olive, N. H. Abdullah,
I. Ziemecka, E. Mendes, R. Eelkema, J. H. van Esch, Angew. Chem. Int.
Ed., 2014, 53, 4132–4136. c) K. E. Inostroza-Brito, E., Collin, O. Siton-
Mendelson, K. H. Smith, A. Monge-Marcet, D. S. Ferreira, R. P.
Rodríguez, M. Alonso, J. C. Rodríguez-Cabello, R. L. Reis, F. Sagués,
L. Botto, R. Bitton, H. S. Azevedo, A. Mata, Nat. Chem., 2015, 7, 897–
904. d) J. R. Fores, M. L. M. Mendez, X. Mao, D. Wagner, M. Schmutz,
M. Rabineau, P. Lavalle, P. Schaaf, F. Boulmedais, L. Jierry, Angew.
Chem. Int. Ed., 2017, 56, 15984-15988.
(
2
DBS-CONHNH ) retains its unique properties within the hybrid
gel, such as the ability to reduce Pd(II) to Pd(0) NPs in situ, thus
creating catalytic gel beads. Gel beads could be simply added
into a Suzuki-Miyaura reaction, with just a single bead being able
to facilitate reaction. The ease of dosing these shaped and
structured gel beads demonstrates an advantage of this approach
–
fusing the function of an active LMWG with the shaping potential
of a PG. We suggest that this hybrid gel approach using calcium
alginate to form gel beads should be broadly applicable to a wide
range of different LMWGs in order to formulate them into gel
spheres, and work in this direction is currently underway in our
laboratories. This is therefore a very simple, highly versatile
platform technology that could see widespread use in extending
the range of LMWG applications. In addition to working to extend
the range of gelators incorporated within these beads, we are also
investigating further control to yield micro/nano-sized gel beads,
and demonstrating the full potential scope of encapsulated
shaped and structured LMWG materials, thus opening up even
more wide-ranging new applications.
[
11] a) M. Lovrak, W. E. J. Hendriksen, C. Maity, S. Mytnyk, V. van Steijn, R.
Eelkema, J. H. van Esch, Nat. Commun., 2017, 8, 15317. b) J. Ruíz-
Olles, D. K. Smith, Chem. Sci., 2018, 9, 5541-5550. c) D. Spitzer, V.
Marichez, G. J. M. Formon, P. Besenius, T. M. Hermans, Angew. Chem.
Int. Ed., 2018, 57, 11349-11353.
[
12] a) C. Felip-Léon, R. Cejudo-Marín, M. Peris, F. Galindo, J. F. Miravet,
Langmuir, 2017, 33, 10322-10328. b) A. Torres-Martínez, C. A. Angulo-
Pachón, F. Galindo, J. F. Miravet, Soft Matter, 2019,15, 3565-3572.
13] S. Bai, S. Debnath, K. Gibson, B. Schlicht, L. Bayne, M. Zagnoni, R. V.
Ulijn, Small, 2014, 10, 285-293.
[
[
14] a) S. Bai, C. Pappas, S. Debnath, P. W. J. M. Frederix, J. Leckie, S.
Fleming, R. V. Ulijn, ACS Nano, 2014, 8, 7005-7013; b) F. Aviño, A. B.
Matheson, D. J. Adams, P. S. Clegg, Org. Biomol. Chem., 2017, 15,
6342-6348.
This article is protected by copyright. All rights reserved.